

Day 1 (Mon. Jun. 5)

Workshop 01	Integration of engineering, plant sciences, and agricultural research for translational research
Application#: W04 Day 1: Mon. Jun. 5	Organized by: Ross Sozzani (North Carolina State University), Lucia Strader (Duke University) This workshop focuses on the integration of engineering and biology for plant improvement. Networks of scientists that conduct basic and applied research are critical for advancing this field. The workshop aims to cover data acquisition, data intergration, and data mining while promoting knowledge transfer and skill sharing. Biotech-enabled plant advances incorporating whole-plant structure and physiology will be essential to solve global agriculture problems.
14:00 - 14:03	Opening remarks
14:03 - 14:18	Integrating Engineering, Plant Sciences, and Agricultural Research for Translational Research: An Introduction to the Workshop and Case Study Presentation Ross Sozzani (North Carolina State University, USA) on-site, C000811
14:19 - 14:34	Multi-scale modeling approaches for understanding plant and agronomic systems across biological scales
14:35 - 14:50	Cranos Williams (North Carolina State University, USA) on-site, C000792 The nexus of plant peptide-receptor modules and environmental adaptation Akie Shimotohno (Nagoya University, Japan) on-site, C000363
14:50 - 15:00	Closing remarks
Workshop 02	Coordinating and utilizing the rapidly growing collection of independently assembled Arabidopsis genomes
Application#: W07	Organized by: Magnus Nordborg (Gregor Mendel Institute, Austrian Academy of Sciences), Detlef Weigel (Max Planck Institute for Biology, Tübingen)
Day 1: Mon. Jun. 5	Advances in long-read sequencing technology have made it possible to complement the Arabidopsis reference genome with hundreds of independently assembled genomes. For these data to be useful to the community they need to be integrated with previously existing resources from the 1001 Genomes Project. We will discuss how this can be accomplished, and what we can learn from complete genome information on species-wide scale.
14:00 - 14:01	Opening remarks
14:01 - 14:10	Rapid cycles of satellite homogenization and retrotransposon invasion drive Arabidopsis pancentromere evolution
14:11 - 14:20	Ian Henderson (University of Cambridge, United Kingdom) on-site, C000775 The pan-genome and local adaptation of Arabidopsis thaliana Jianquan Liu (Lanzhou University, China) on-site, C000629
14:21 - 14:30	Assembling and Annotating Arabidopsis Genomes to Model Protein Abundance Richard Mott (University College London, United Kingdom) on-site, C000753
14:31 - 14:40	The Actual Mobilome of Arabidopsis thaliana Anna Igolkina (GMI, Austria) on-site, C000536
14:41 - 14:50	Benchmarking graph building pipeline on plant genome assemblies Zhigui Bao (Max Planck Institute for Biology Tübingen, Germany) on-site, C000511
14:51 - 15:00	Challenges of annotating complex genes in the Arabidopsis long read genome collection Luisa Teasdale (Max Planck Institute - Department of Biology, Germany) on-site, C000688

Application#: W08 Organized by: Shahid Mukhtar (University of Alabama at Birmingham) A systems perspective on mechanisms of pathogen infection and plants' responses to such biolic stresses can lead to significant advances in plant biology and grinciture in general. This session will highlight exciting new discoveries being made in plant-pathogen interactions by leveraging functional genomics and systems biology of pranches in the model system Arabidopsis and agronomically important crop plants. We will seek topics pertinent to plant receptor networks to agronomically important crop plants. We will seek topics pertinent to plant receptor networks to different scales (ag. 1: Bisuek high columns), mechanisms of pathogens, transcriptional gene regulatory networks at different scales (ag. 1: Bisuek high columns), mechanisms of pathogen annipulation of host plants, and systemic outcomes of Infection. 14:00 14:00 Opening remarks 14:01 14:20 MAM Pand DAMP signalling contributes resistance to Fusarime outcomes of Infections. Gongal Subramaniam (Agriculture and Agri-Food Canada, Canada) on-site, C000819 14:42 14:33 Functional or NAT? RNA control of receptor expression Acabidopsis Mot (Nagoya University of Toronto - Scarborough, Canada) on-site, C000144 14:57 15:00 Closing remarks Organized by: Julia Santiago (University of Lausanne), Tesuya Higashiyama (University of Tokyo) The workshop will cover different aspects of molecular dialogues controling reproduction in plants. Other specific point material discusses collared by: Julia Santiago (University of Lausanne), Tesuya Higashiyama (University of Tokyo) The workshop will cover diffe			
Day 1: Mon. Jun. 5 A systems perspective on mechanisms of pathogen infection and plants: responses to such biotic significant advances in plant biology and griculture in general. This session will highlight exciting new discoveries being made in plant-pathogen interactions by leveraging functional genomics and systems biology approaches in the model system Arabidopsis and agronomically important crop plants. We will seek topics pathogens, transcriptional gene regulatory networks at different scales (e.g., tissueshingle cell), mechanisms of pathogen minulation of host plants, and systemic outcomes of infection. 14:00 14:00 Qpening remarks 14:02 14:04 14:07 14:15 Spatial and systems biology of plant-microbe interactions Shahid Mukhtar (University of Alabama at Birmingham, USA) on-site, C000819 14:14 14:20 MAMP and DAMP signalling contributes resistance to Fusarimic outcomes of Unfection of Herbitovers for Survival from Vinuent Pathogens in Arabidopsis Gopal Subramaniam (Agriculture and Agri-Food Canada, Canada) on-site, C00077 14:30 14:44 14:57 14:30 Classing remarks Vorkshop 04 Molecular dialogues in reproductive development Application#: W09 Organized by Julia Santiago (University of Lausanne), Tetsuya Higashiyama (University of Tokyo) The workshop will cover different aspects of molecular dialogues controling reproduction in plants. Duby splate plants applet to plant absorber plant and platerning by a sensor complex coordinates cell wall architecture and different spantic endopeplates CGSI and ECS2 in fertilization Marce	Workshop 03	Systems biology of plant-microbes interactions	
14:0214:15Spatial and systems biology of plant-microbe interactions Shahid Mukhtar (University of Alabama at Birmingham, USA) on-site, C00081914:1614:29MAMP and DAMP signalling contributes resistance to Fusarium graminearum in Arabidopsis Copal Subramaniam (Agriculture and Agri-Food Canada, Canada) on-site, C00077714:3014:43Attraction of Herbivores for Survival from Wirulent Pathogens in Arabidopsis Kazuha Mori (Nagoya University, Japan) on-site, C00065814:4414:5714:5014:57Functional or NAT? RNA control of receptor expression Adam Moti (University of Toronto - Scarborough, Canada) on-site, C00014414:5715:00Closing remarksWorkshop 04Molecular dialogues in reproductive developmentApplication#: W09 Day 1: Mon. Jun. 5Organized by: Julia Santiago (University of Lausanne), Tetsuya Higashiyama (University of Tokyo) The workshop will cover different aspects of molecular dialogues controling reproduction in plants.14:0014:0114:1914:2014:33Turning up the volume on intercellular communication during pollen tube reception Sharon Kessler (Purdue University, USA) on-site, C00022914:2014:33Turning up the volume on intercellular communication during pollen tube reception Sharon Kessler (Purdue University, China) on-site, C00022914:5715:5016:00Representative of the ICAR2023 Organizing CommitteeKeynote 0116:0016:45Transcriptional regulatory network of plant abiotic stress responses Kazuko Yamaguchi-Shinozaki (Tokyo University of Agriculture, Japan) on-site, 1000014 Chaired by Motoaki Seki (RIKEN CSRS) <td co<="" td=""><td>Application#: W08 Day 1: Mon. Jun. 5</td><td>A systems perspective on mechanisms of pathogen infection and plants' responses to such biotic stresses can lead to significant advances in plant biology and agriculture in general. This session will highlight exciting new discoveries being made in plant-pathogen interactions by leveraging functional genomics and systems biology approaches in the model system Arabidopsis and agronomically important crop plants. We will seek topics pertinent to plant receptor networks to perceive diverse pathogens, transcriptional gene regulatory networks at different scales (e.g. tissue/single cell),</td></td>	<td>Application#: W08 Day 1: Mon. Jun. 5</td> <td>A systems perspective on mechanisms of pathogen infection and plants' responses to such biotic stresses can lead to significant advances in plant biology and agriculture in general. This session will highlight exciting new discoveries being made in plant-pathogen interactions by leveraging functional genomics and systems biology approaches in the model system Arabidopsis and agronomically important crop plants. We will seek topics pertinent to plant receptor networks to perceive diverse pathogens, transcriptional gene regulatory networks at different scales (e.g. tissue/single cell),</td>	Application#: W08 Day 1: Mon. Jun. 5	A systems perspective on mechanisms of pathogen infection and plants' responses to such biotic stresses can lead to significant advances in plant biology and agriculture in general. This session will highlight exciting new discoveries being made in plant-pathogen interactions by leveraging functional genomics and systems biology approaches in the model system Arabidopsis and agronomically important crop plants. We will seek topics pertinent to plant receptor networks to perceive diverse pathogens, transcriptional gene regulatory networks at different scales (e.g. tissue/single cell),
Shahid Mukhtar (University of Alabama at Birmingham, USA) on-site, C000819 14:16 - 14:29 MAMP and DAMP signalling contributes resistance to Fusarium graminearum in Arabidopsis Gopal Subramaniam (Agriculture and Agri-Food Canada, Canada) on-site, C000777 14:30 - 14:43 Attraction of Herbivores for Survival from Virulent Pathogens in Arabidopsis Kazuha Mori (Nagoya University, Japan) on-site, C000588 14:44 - 14:57 Functional or NAT? RNA control of receptor expression Adam Mott (University of Toronto - Scarborough, Canada) on-site, C000144 14:57 - 15:00 Closing remarks Workshop 04 Molecular dialogues in reproductive development Application#: W09 Organized by: Julia Santiago (University of Lausanne), Tetsuya Higashiyama (University of Tokyo) The workshop will cover different aspects of molecular dialogues controling reproduction in plants. 14:00 - 14:01 Opening remarks 14:20 - 14:38 Turning up the volume on intercellular communication during pollen tube reception Sharon Kessler (Purdue University, USA) on-site, C000716 14:39 - 14:57 Hould Coving remarks Opening Representative of the ICAR2023 Organizing Committee 14:50 - 16:00 Representative of the ICAR2023 Organizing Committee Keynote 01 Transcriptional regulatory network of plant abiotic stress responses Kazuko Yamaguchi-Shinozaki (Tokyo University of Agriculture, Japan) on-site, 100014 16:45 - 17:30 Regulatio			
Gopal Subramanian (Agriculture and Agri-Food Canada, Canada) on-site, C000777 14:30 - 14:43 Attraction of Herbivores for Survival from Virulent Pathogens in Arabidopsis Kazuha Mori (Nagoya University) Japan) on-site, C000568 14:44 - 14:57 Functional or NAT? RNA control of receptor expression Adam Mott (University of Toronto - Scarborough, Canada) on-site, C000144 14:57 - 15:00 Closing remarks Workshop 04 Molecular dialogues in reproductive development Application#: W09 Organized by: Julia Santiago (University of Lausanne), Tetsuya Higashiyama (University of Tokyo) The workshop will cover different aspects of molecular dialogues controling reproduction in plants. Opening remarks 14:01 14:19 14:20 14:38 14:20 14:39 14:39 14:57 14:39 14:57 14:57 15:00 Closing remarks Coli viewersity of Lausanne, Switzerland) on-site, C000716 14:20 14:38 14:39 14:57 14:57 15:00 Closing remarks Colo of aspartic endopeptidases ECS1 and ECS2 in fertilization Meng-xiang Sun (Wuhan University, China) on-site, C000229 14:57 15:00 Closing remarks Closing remarks Colo Representative of the ICAR2023 Organizing Committee <	14.02 - 14.13		
14:3014:33Attraction of Herbivores for Survival from Virulent Pathogens in Arabidopsis Kazuha Mori (Nagoya University, Japan) on-site, C00065814:4414:5714:5714:5715:00Closing remarksWorkshop 04Molecular dialogues in reproductive developmentApplication#: W09 Day 1: Mon. Jun. 5Organized by: Julia Santiago (University of Lausanne), Tetsuya Higashiyama (University of Tokyo) The workshop will cover different aspects of molecular dialogues controlling reproduction in plants. Opening remarks14:0014:0114:1114:2014:3814:3914:5714:3014:5714:3014:5715:30Cell wall recognition and patterning by a sensor complex coordinates cell wall architecture and drives pollen tube expansion Julia Santiago (University of Lausanne, Switzerland) on-site, C00071614:2014:3814:5715:0014:5715:0014:5715:0015:5016:0016:0016:4516:0016:4516:4517:30Regulation of Arabidopsis leaf growth and applications in crops Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, 1000010	14:16 - 14:29		
14:44 - 14:57 Functional or NAT? RNA control of receptor expression Adam Mott (University of Toronto - Scarborough, Canada) on-site, C000144 14:57 - 15:00 Closing remarks Workshop 04 Molecular dialogues in reproductive development Application#: W09 Day 1: Mon. Jun. 5 Organized by: Julia Santiago (University of Lausanne), Tetsuya Higashiyama (University of Tokyo) The workshop will cover different aspects of molecular dialogues controling reproduction in plants. Opening remarks 14:00 - 14:01 Oli antibe expansion Julia Santiago (University of Lausanne, Switzerland) on-site, C000716 14:20 - 14:38 Turning up the volume on intercellular communication during pollen tube reception Sharon Kessler (Purdue University, USA) on-site, C000229 14:39 - 14:57 Multiple roles of aspartic endopeptidases ECS1 and ECS2 in fertilization Meng-xiang Sun (Wuhan University, China) on-site, C000229 14:50 - 16:00 Representative of the ICAR2023 Organizing Committee Keynote 01 Transcriptional regulatory network of plant abiotic stress responses Kazuko Yamaguchi-Shinozaki (Tokyo University of Agriculture, Japan) on-site, 100014 Chaired by Motoaki Seki (RIKEN CSRS) Keynote 02 16:45 - 17:30 Regulation of Arabidopsis leaf growth and applications in crops Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, 1000010	14:30 - 14:43		
Adam Mott (University of Toronto - Scarborough, Canada) on-site, C000144 14:57 - 15:00 Closing remarks Workshop 04 Molecular dialogues in reproductive development Application#: W09 Organized by: Julia Santiago (University of Lausanne), Tetsuya Higashiyama (University of Tokyo) The workshop will cover different aspects of molecular dialogues controling reproduction in plants. Opening remarks 14:00 - 14:01 14:01 14:02 - 14:31 Cell wall recognition and patterning by a sensor complex coordinates cell wall architecture and drives pollen tube expansion Julia Santiago (University of Lausanne, Switzerland) on-site, C000716 14:20 - 14:33 Turning up the volume on intercellular communication during pollen tube reception Sharon Kessler (Purdue University, USA) on-site, C000353 14:57 - 15:00 Closing remarks Opening Itsisp - 16:00 15:50 - 16:00 Representative of the ICAR2023 Organizing Committee Keynote 01 Transcriptional regulatory network of plant abiotic stress responses Kazuko Yamaguchi-Shinozaki (Tokyo University of Agriculture, Japan) on-site, 100014 Chaired by Motoaki Seki (RIKEN CSRS) Keynote 02 16:45 - 17:30 Regulation of Arabidopsis leaf growth and applications in crops Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, 1000010	11.11 - 11.57		
Workshop 04 Molecular dialogues in reproductive development Application#: W09 Organized by: Julia Santiago (University of Lausanne), Tetsuya Higashiyama (University of Tokyo) The workshop will cover different aspects of molecular dialogues controling reproduction in plants. Opening remarks 14:01 - 14:19 Cell wall recognition and patterning by a sensor complex coordinates cell wall architecture and drives pollen tube expansion Julia Santiago (University of Lausanne, Switzerland) on-site, C000716 14:20 - 14:38 Turning up the volume on intercellular communication during pollen tube reception Sharon Kessler (Purdue University, USA) on-site, C000353 14:39 - 14:57 Multiple roles of aspartic endopeptidases ECS1 and ECS2 in fertilization Meng-xiang Sun (Wuhan University, China) on-site, C000229 14:57 - 15:00 Closing remarks Opening Everyote 01 16:00 - 16:45 Transcriptional regulatory network of plant abiotic stress responses Kazuko Yamaguchi-Shinozaki (Tokyo University of Agriculture, Japan) on-site, 1000014 Chaired by Motoaki Seki (RIKEN CSRS) Keynote 02 16:45 - 17:30 Regulation of Arabidopsis leaf growth and applications in crops Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, 1000010	17.07		
Application#: W09 Organized by: Julia Santiago (University of Lausanne), Tetsuya Higashiyama (University of Tokyo) Day 1: Mon. Jun. 5 The workshop will cover different aspects of molecular dialogues controling reproduction in plants. 14:00 - 14:01 Gell wall recognition and patterning by a sensor complex coordinates cell wall architecture and drives pollen tube expansion 14:01 - 14:19 Gell wall recognition and patterning by a sensor complex coordinates cell wall architecture and drives pollen tube expansion Julia Santiago (University of Lausanne, Switzerland) on-site, C000716 14:20 - 14:33 Turning up the volume on intercellular communication during pollen tube reception Sharon Kessler (Purdue University, USA) on-site, C000253 14:39 - 14:57 Multiple roles of aspartic endopeptidases ECS1 and ECS2 in fertilization Meng-xiang Sun (Wuhan University, China) on-site, C000229 14:57 - 15:00 Closing remarks Opening 15:50 - 16:00 Representative of the ICAR2023 Organizing Committee Keynote 01 16:00 - 16:45 Transcriptional regulatory network of plant abiotic stress responses Kazuko Yamaguchi-Shinozaki (Tokyo University of Agriculture, Japan) on-site, 1000014 Chaired by Motoaki Seki (RIKEN CSRS) Keynote 02 16:45 - 17:30 16:45 - 17:30 Regulation of Arabidopsis leaf gr	14:57 - 15:00	Closing remarks	
Day 1: Mon. Jun. 5 The workshop will cover different aspects of molecular dialogues controling reproduction in plants. Opening remarks 14:00 - 14:10 Cell wall recognition and patterning by a sensor complex coordinates cell wall architecture and drives pollen tube expansion Julia Santiago (University of Lausanne, Switzerland) on-site, C000716 14:20 - 14:38 Turning up the volume on intercellular communication during pollen tube reception Sharon Kessler (Purdue University, USA) on-site, C000353 14:39 - 14:57 Multiple roles of aspartic endopeptidases ECS1 and ECS2 in fertilization Meng-xiang Sun (Wuhan University, China) on-site, C000229 14:57 - 15:00 Closing remarks Opening Representative of the ICAR2023 Organizing Committee Keynote 01 Transcriptional regulatory network of plant abiotic stress responses Kazuko Yamaguchi-Shinozaki (Tokyo University of Agriculture, Japan) on-site, 1000014 Chaired by Motoaki Seki (RIKEN CSRS) Keynote 02 16:45 - 17:30 Regulation of Arabidopsis leaf growth and applications in crops Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, 1000010	Workshop 04	Molecular dialogues in reproductive development	
14:01 - 14:19 drives pollen tube expansion Julia Santiago (University of Lausanne, Switzerland) on-site, C000716 14:20 - 14:38 Turning up the volume on intercellular communication during pollen tube reception Sharon Kessler (Purdue University, USA) on-site, C000353 14:39 - 14:57 Multiple roles of aspartic endopeptidases ECS1 and ECS2 in fertilization Meng-xiang Sun (Wuhan University, China) on-site, C000229 14:57 - 15:00 Closing remarks Opening 15:50 - 16:00 16:00 - 16:45 Transcriptional regulatory network of plant abiotic stress responses Kazuko Yamaguchi-Shinozaki (Tokyo University of Agriculture, Japan) on-site, 1000014 Chaired by Motoaki Seki (RIKEN CSRS) Keynote 02 16:45 - 17:30 Regulation of Arabidopsis leaf growth and applications in crops Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, 1000010	Application#: W09 Day 1: Mon. Jun. 5 14:00 - 14:01	The workshop will cover different aspects of molecular dialogues controling reproduction in plants. Opening remarks	
14:20 - 14:38 Turning up the volume on intercellular communication during pollen tube reception Sharon Kessler (Purdue University, USA) on-site, C000353 14:39 - 14:57 14:57 Multiple roles of aspartic endopeptidases ECS1 and ECS2 in fertilization Meng-xiang Sun (Wuhan University, China) on-site, C000229 14:57 - 15:00 Closing remarks Opening Representative of the ICAR2023 Organizing Committee 15:50 - 16:00 Transcriptional regulatory network of plant abiotic stress responses Kazuko Yamaguchi-Shinozaki (Tokyo University of Agriculture, Japan) on-site, I000014 Chaired by Motoaki Seki (RIKEN CSRS) Keynote 02 16:45 - 17:30 Regulation of Arabidopsis leaf growth and applications in crops Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, I000010	14:01 - 14:19	drives pollen tube expansion	
Meng-xiang Sun (Wuhan University, China) on-site, C000229 14:57 15:00 Closing remarks Opening 15:50 16:00 Representative of the ICAR2023 Organizing Committee Keynote 01 16:00 16:45 Transcriptional regulatory network of plant abiotic stress responses Kazuko Yamaguchi-Shinozaki (Tokyo University of Agriculture, Japan) on-site, 1000014 Chaired by Motoaki Seki (RIKEN CSRS) Keynote 02 16:45 16:45 17:30 Regulation of Arabidopsis leaf growth and applications in crops Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, 1000010	14:20 - 14:38	Turning up the volume on intercellular communication during pollen tube reception	
15:50 - 16:00 Representative of the ICAR2023 Organizing Committee Keynote 01 16:00 - 16:45 Transcriptional regulatory network of plant abiotic stress responses Kazuko Yamaguchi-Shinozaki (Tokyo University of Agriculture, Japan) on-site, 1000014 Chaired by Motoaki Seki (RIKEN CSRS) Keynote 02 16:45 - 17:30 Regulation of Arabidopsis leaf growth and applications in crops Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, 1000010		Meng-xiang Sun (Wuhan University, China) on-site, C000229	
15:50 - 16:00 Representative of the ICAR2023 Organizing Committee Keynote 01 16:00 - 16:45 Transcriptional regulatory network of plant abiotic stress responses Kazuko Yamaguchi-Shinozaki (Tokyo University of Agriculture, Japan) on-site, 1000014 Chaired by Motoaki Seki (RIKEN CSRS) Keynote 02 16:45 - 17:30 Regulation of Arabidopsis leaf growth and applications in crops Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, 1000010	Opening		
Keynote 01 16:00 - 16:45 Transcriptional regulatory network of plant abiotic stress responses Kazuko Yamaguchi-Shinozaki (Tokyo University of Agriculture, Japan) on-site, 1000014 Chaired by Motoaki Seki (RIKEN CSRS) Keynote 02 16:45 - 17:30 Regulation of Arabidopsis leaf growth and applications in crops Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, 1000010			
 16:00 - 16:45 Transcriptional regulatory network of plant abiotic stress responses <pre>Kazuko Yamaguchi-Shinozaki (Tokyo University of Agriculture, Japan) on-site, 1000014</pre>	15:50 - 16:00	Representative of the ICAR2023 Organizing Committee	
Kazuko Yamaguchi-Shinozaki (Tokyo University of Agriculture, Japan) on-site, 1000014 Chaired by Motoaki Seki (RIKEN CSRS) Keynote 02 16:45 - 17:30 Regulation of Arabidopsis leaf growth and applications in crops Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, 1000010	Keynote 01		
Chaired by Motoaki Seki (RIKEN CSRS) Keynote 02 16:45 - 17:30 Regulation of Arabidopsis leaf growth and applications in crops Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, 1000010	16:00 - 16:45		
16:45 - 17:30 Regulation of Arabidopsis leaf growth and applications in crops Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, I000010			
Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, I000010	Keynote 02		
	16:45 - 17:30	Dirk Inzé (VIB Center for Plant Systems Biology, Belgium) on-site, I000010	
Reception	Reception		
18:00 - 20:00	18:00 - 20:00		

Day 2 (Tue. Jun. 6)

Plenary 01	From single cells to an organism
9:00 - 9:30	Fast and invasive cell growth requires resilient cell wall assembly Anja Geitmann (McGill University, Canada) on-site, 1000013 Chaired by Keiji Nakajima (Nara Institute of Science and Technology)
9:30 - 10:00	Mechanical conflict and cell polarity in de novo shoot initiation Kalika Prasad (Indian Institute of Science Education and Research, India) on-site, 1000007 Chaired by Ikram Blilou (King Abdullah University of Science and Technology)
10:00 - 10:30	Understanding vascular development using chemical and single cell biology Bert De Rybel (VIB/Ghent University, Belgium) on-site, 1000008 Chaired by Ken Birnbaum (New York University)
Plenary 02	Interactions between organisms
11:00 - 11:30	Leveraging DANGEROUS MIX Autoimmunity to Understand Host-Microbe Interactions Eunyoung Chae (National University of Singapore, Singapore) on-site, 1000023 Chaired by Satoko Yoshida (Nara Institute of Science and Technology)
11:30 - 12:00	Overlapping and distinct pathogen effector recognition specificities conferred by independently evolved NLR proteins in plants Kee Hoon Sohn (Seoul National University, Korea) on-site, 1000016
	Chaired by Yasuhiro Kadota (RIKEN CSRS)
12:00 - 12:30	Understanding environmental influence on plant-pathogen interactions Xiufang Xin (Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; CEPAMS, Chinese Academy of Sciences-John Innes Center joint program, China) on-site, 1000011 Chaired by Kei Hiruma (University of Tokyo)
Workshop 05	Science as stories: From data to presentations. The untold story of your research.
Application#: W13 Day 2: Tue. Jun. 6	Organized by: Belén Moro (Centre for Research in Agricultural Genomics (CRAG)) The aim of the workshop is to learn how to prepare scientific presentations that convey a clear message and maximize the output of your research. Our framework combines storytelling with how the brain process oral information along with images. We will dissect the anatomy of a presentation and discuss what makes it memorable.
13:15 -	

Concurrent 01	Advances in plant nutrition under changing environment
Application#: C04 Day 2: Tue. Jun. 6	Organized by: Hatem Rouached (Michigan State University), Benoit Lacombe (CNRS) Plants have evolved highly effective transport, sensing and signaling systems to ensure acquisition of sufficient minerals for growth and development. This session aims to share new results on newly identified genes/regulatory pathways or metabolites involved in the regulation of ion homeostasis in plants. These include, but are not limited to: (i) effects of limitation or excess of various macro- and microelements on plant growth capacity; (ii) effects of components of global climate changes (drought, CO2, heat, etc.) on the regulation of ions transport and assimilation.
14:30 - 14:37	Plant growth stimulation by elevated CO2 depends on phosphorus homeostasis in chloroplasts Hatem Rouached (Michigan State University, USA) on-site, C000178
14:38 - 14:48	Nutritional interactions in plants (N x P) and new type of GWAS providing full epistatic maps with a gene resolution. Gabriel Krouk (CNRS, France) on-site, C000783
14:49 - 15:01	Plasticity of root permeability for nutrient acquisition Marie Barberon (University of Geneva, Switzerland) on-site, C000209
15:02 - 15:14	BUZZ: An essential gene in post-initiation root hair growth and root architecture in response to nitrate
15:15 - 15:27	Karen Sanguinet (Washington State University, USA) on-site, C000813 Live transcription imaging of plant Pi starvation response Laurent Nussaume (CEA, France) on-site, C000157
15:28 - 15:38	Nitrogen signaling mechanisms modulating root gravitropism: involvement of flowering repressor and peptide hormone signaling Hideki Takahashi (Michigan State University, USA) on-site, C000266
15:39 - 15:46	Histone chaperone NAP1 proteins are involved in plant growth under nitrogen deficient conditions in Arabidopsis thaliana [Short Talk] Jie Linnan (Hokkaido University, Japan) on-site, C000670
15:47 - 15:54	The genetic diversity provided by natural Arabidopsis accessions to identify potentially adaptive differences in root morphology and soil resource capture [Short Talk] Christian Hermans (Université libre de Bruxelles (ULB), Belgium) on-site, C000545
Concurrent 02	The environmentally responsive plant epigenome
Application#: C19	Organized by: Hong Qiao (University of Texas at Austin), Mark Zander (Rutgers, State University of New Jersey)
Day 2: Tue. Jun. 6	The environmental responsiveness of the plant epigenome is an emerging and fascinating research area. To shed new light on the underlying mechanisms, our speaker list covers exciting topics ranging from immediate impacts of stress over vernalization to technologies capturing epigenome dynamics.
14:30 - 14:32 14:32 - 14:48	Opening remarks Jasmonate signaling through the lens of epigenomics Mark Zander (Rutgers University, USA) on-site, C000802
14:49 - 15:05	(Re)programming Cell Identity and Function in Response to intrinsic and extrinsic cues Doris Wagner (University of Pennsylvania, USA) on-site, C000787
15:06 - 15:22	A DNA element to remember 'winter cold' in Arabidopsis Yuehui HE (Peking University, China) on-site, C000630
15:23 - 15:39	TANDEM ZINC-FINGER/PLUS3 integrates light and temperature signalling in plant nuclear hubs.
15:40 - 15:49	Eirini Kaiserli (University of Glasgow, Scotland, United Kingdom) on-site, C000119 Sensory plastids in growth- and defense-related epigenetic phenotype adjustment [Short Talk] Ha Eun Jeh (Pennsylvania State University, USA) on-site, C000030
15:50 - 15:59	Epidermal Cell Type-Specific Chromatin Dynamics Underlying Arabidopsis Heat Stress Memory [Short Talk] Daniel Slane (The University of Tokyo, Graduate School of Frontier Sciences, Department of Integrated Sciences, Laboratory of Integrated Biology, Japan) on-site, C000307
15:59 - 16:00	Closing remarks

Concurrent 03	New tools and applications in plant molecular genetics
Application#: C07 Day 2: Tue. Jun. 6	Organized by: Eilon Shani (Tel Aviv University) The session will focus on developing new genetic and biotechnological discoveries in plant biology. This year's outstanding achievements in CRISPR biology (e.g., cell-type-specific genome editing, genome- scale sgRNA libraries), imaging mass spectrometry, TF interactomics, Cryo-electron microscopy of membrane proteins, flux metabolomics, plant phenomics, root micro-fluidics, super-resolution microscopy, and single-cell methylation, spatial transcriptomics and more have gained significant success worldwide. The session will allow scientists to present their most advanced discoveries and discuss the cutting technologies transforming plant science.
14:30 - 14:32	Opening remarks
14:32 - 14:47	Identifying Transcriptional Activation Domains Lucia Strader (Duke University, USA) on-site, C000832
14:48 - 15:03	Natural and artificial regulation of plant cell states Ryan Lister (University of Western Australia, Australia) on-site, C000830
15:04 - 15:19	Time to sow: In planta CRISPR screens are ready Thomas Jacobs (VIB-UGent Center for Plant Systems Biology, Belgium) on-site, C000803
15:20 - 15:32	Location, location, location: a system-wide assesment of subcellular protein localization in Arabidopsis roots by mass-spectrometry [Short Talk] Monique van Schie (Wageningen University, Netherlands) on-site, C000334
15:33 - 15:45	A single-nucleus transcriptome atlas of seed-to-seed development in Arabidopsis [Short Talk] Travis Lee (Salk Institute, USA) on-site, C000090
15:46 - 15:58	Multi-Knock – a multi-targeted genome-scale CRISPR toolbox to overcome functional redundancy in plants Eilon Shani (Tel Aviv University, Israel) on-site, C000779
15:58 - 16:00	Closing remarks
Concurrent 04	Cellular reprogramming in regeneration and development
Application#: C17 Day 2: Tue. Jun. 6	Organized by: Idan Efroni (The Hebrew University), Alexis Maizel (Heidelberg University) At the heart of plants' developmental plasticity is the broad ability of their cells to undergo rapid and coordinated changes in cell identity and function. This is manifested during post-embryonic formation of new organs and in their ability to repair damaged organs and tissues. The session will focus on the parallels and convergences in cellular reprogramming mechanisms during development and regeneration.
14:30 - 14:32	Opening remarks
14:32 - 14:48	Specific regulation on diverse regenerative responses in Arabidopsis Momoko Ikeuchi (Nara Institute of Science and Technology, Japan) on-site, C000404
14:49 - 15:05	Born Again: The Early Stages of Plant Cell Reprogamming Kenneth Birnbaum (New York University, USA) on-site, C000778
15:06 - 15:22	A molecular framework for regeneration competency in plants Abdul Kareem (Swedish University of Agricultural Sciences, Uppsala, Sweden) on-site, C000737
15:23 - 15:34	Transcriptional Regulation of Cell-cell Movement During Root Tip Regeneration [Short Talk] Itay Cohen (Hebrew University of jerusalem, Israel) on-site, C000493
15:35 - 15:46	It's All in the Timing: Enhancing Regeneration Efficiency Using Morphogenic Factors [Short Talk]
15:47 - 15:58	Bastiaan Bargmann (Virginia Tech, USA) on-site, C000351 Leaf epidermal patterning and fate determination [Short Talk] Chin-Min Ho (Institute of plant and microbial biology, Academia Sinica, Taiwan) on-site, C000022
15:58 - 16:00	Closing remarks

Concurrent 05	Organelle-organelle communication under stress
Application#: C20	Organized by: Eunsook Park (University of Wyoming), Inge De Clercq (VIB Center for Plant Systems Biology, Ghent University)
Day 2: Tue. Jun. 6	Organelles coordinate the complex intracellular metabolism in eukaryotic cells by imposing a physical barrier to sequester metabolites and macromolecules. The intricate organization of organelle-organelle communication under biotic and abiotic stresses is a recently emerging research topic and highly relevant to understanding the plant's responses to the changing environment. In this concurrent session, we will highlight the recent findings in a broad range of inter-organellar communication pathways under various stresses.
14:30 - 14:32	Opening remarks
14:32 - 14:42	Chloroplast-nuclear communication in plant immunity Eunsook Park (University of Wyoming, USA) on-site, C000348
14:43 - 14:58	Energy Metabolism vs. Moonlighting: A Balancing Act To Prevent Oxidative Stress Jennifer Selinski (Christian-Albrechts University Kiel, Germany) on-site, C000719
14:59 - 15:14	Investigating how chloroplast-initiated intracellular signals control intercellular trafficking mediated by plasmodesmata in Nicotiana benthamiana Andrea Zanini (Donald Danforth Plant Science Center, USA) on-site, C000537
15:15 - 15:25	Light-induced chloroplast biogenesis: photobodies control alternative promoter selection as a mechanism of nucleus-chloroplast communication [Short Talk] Chan Yul Yoo (University of Utah, USA) on-site, C000611
15:26 - 15:36	405nm Photostimulation of the Endoplasmic Reticulum-Chloroplast Contact Site in Arabidopsis Hypocotyls Causes Rapid Cytoskeletal Depolymerization, Elevated Cytoplasmic Calcium, and Elevated Organellar ROS [Short Talk] Sara Maynard (Texas A&M University, USA) on-site, C000764
15:37 - 15:47	Fuctional characterization of Arabidopsis thaliana Synaptotagmin1 domains using Tricalbin3 chimeras in Saccharomyces cerevisiae. [Short Talk] Francisco Benitez-Fuente (UNIVERSIDAD DE MALAGA, CSIC (IHSM), Spain) on-site, C000471
15:48 - 15:58	Elucidating organelle-organelle and organelle-to-nucleus signaling pathways during plant stress responses Inge De Clercq (Ghent University / VIB UGent Center for Plant Systems Biology, Belgium) on-site, C000804
15:58 - 16:00	Closing remarks
Concurrent 06	Plant proteostasis: The dynamic proteome in plant cell signalling
Application#: C35	Organized by: Uli Bechtold (Durham University), Ari Sadanandom (Durham University)

rippiloadoriii. 0000	organized by: on Deenteid (Dunian envereig), in Eduananden (Dunian envereig)
Day 2: Tue. Jun. 6	This ICAR session has a dual purpose in highlighting recent discoveries in plant Proteostasis as well as the tools that have been made available through the Plant Proteostasis community to enable new researchers to explore the role of proteostasis in diverse aspects of plant development and response to environment.
14:30 - 14:32	Opening remarks
14:32 - 14:48	SUMOcode: Deciphering how SUMOylation enables plants to adapt to their environment. Ari Sadanandom (University of Durham, United Kingdom) on-site, C000823
14:49 - 15:05	Regulation of proteostasis and activation of Ca2+ channels by two distinct receptor kinases in maintaining immune integrity
	Libo Shan (Texas A&M University, USA) on-site, C000340
15:06 - 15:22	Proximity labeling proteomics identified an inner nuclear membrane protein degradation system in plants
	Yangnan Gu (University of California, Berkeley, USA) on-site, C000085
15:23 - 15:39	Regulation of the homeostasis of immune signaling proteins through proteasome-mediated degradation
	Xin Li (University of British Columbia, Canada) on-site, C000540
15:40 - 15:49	Identification of interacting factors of the TARANI/ Ubiquitin-specific protease 14 (UBP14) in Arabidopsis thaliana [Short Talk]
	Anjana Hegde (Indian Institute of Science, India) on-site, C000514
15:50 - 15:59	Molecular mechanism for peroxisomal protein transport via the ubiquitin system [Short Talk] Shoji Mano (National Institute for Basic Biology, Japan) on-site, C000280
15:59 - 16:00	Closing remarks

Concurrent 07	Arabidopsis and its translational research in the Global South
Application#: C32 Day 2: Tue. Jun. 6 16:30 - 16:32	Organized by: Gabriela Auge (CONICET - iB3, University of Buenos Aires), José Estevez (Fundación Instituto Leloir - CONICET, Argentina / Universidad Andrés Bello, Chile) <i>Arabidopsis research globally has provided invaluable tools to understand the plant world at different</i> <i>biological scales. A sizable proportion of that research is carried out by researchers in the Global South</i> <i>(i.e. countries located around the tropics and the Southern hemisphere), even though these countries</i> <i>face many political and budget limitations for scientific endeavours. This symposium aims to highlight the</i> <i>work of researchers from the Global South, oftentimes under-represented in international conferences, to</i> <i>bring a more diverse perspective to the meeting.</i>
16:32 - 16:47	The power of haploid genetics in plants - Lessons from Arabidopsis thaliana Ravi Maruthachalam (Indian Institute of Science Education and Research(IISER), Thiruvananthapuram, India) on-site, C000588
16:48 - 17:03 17:04 - 17:19	 Plants to humans: Arabidopsis for translational research Sridevi Sureshkumar (Monash University, Australia) on-site, C000109 TOC1 is a direct regulator of the Arabidopsis defence response against necrotrophic pathogens Robert Ingle (University of Cape Town, South Africa) on-site, C000495
17:20 - 17:29	Role of the Arabidopsis AtbZIP63 transcription factor stability in energy management [Short Talk]
17:30 - 17:39	Pamela Carlson (University of Campinas, Brazil) on-site, C000141 NLP7 is a central integrator of transcription networks in nitrogen signaling and drought stress [Short Talk] Jose Alvarez (Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile) on-site, C000520
17:40 - 17:49	A B-Box protein suppresses flowering in Arabidopsis through multi-level regulation of the photoperiod pathway [Short Talk] Rahul Puthan Valappil (Indian Institute of Science Education and Research (IISER), India) on-site, C000350
17:50 - 17:59 17:59 - 18:00	What did the grasses gain by losing PEAPOD? Evolution and conserved functionality of organ size and shape regulator PEAPOD [Short Talk] Ruth Cookson (AgResearch Ltd / University of Waikato, New Zealand) on-site, C000277 Closing remarks
Concurrent 08	Understanding circadian regulation in unpredictable environments
Application#: C05 Day 2: Tue. Jun. 6	Organized by: Antony Dodd (John Innes Centre), Tokitaka Oyama (Kyoto University) Circadian clocks provide a temporal structure within plants, which contributes their responses to the fluctuating environment. Understanding how the circadian clock adapts plant physiology and development to environmental fluctuations forms a crucial part of forecasting the responses of plants- including crops- to an increasingly unpredictable climate.
16:30 - 16:32 16:32 - 16:46	Opening remarks Integration of circadian and environmental cues
16:47 - 17:01	Antony Dodd (John Innes Centre, United Kingdom) on-site, C000793 Behaviors of cell-autonomous- and non-cell-autonomous circadian rhythms in the plant body Tokitaka Oyama (Kyoto University, Graduate School of Science, Japan) on-site, C000833
17:02 - 17:16	A spatial model of the plant clock reveals design principles for coordinated timing under noisy environments
17:17 - 17:31	James Locke (University of Cambridge, United Kingdom) online, C000746 Gene expression noise reduction for a robust circadian clock in Arabidopsis Shu-Hsing Wu (Institute of Plant and Microbial Biology, Academia Sinica, Taiwan) on-site, C000628
17:32 - 17:46	Molecular mechanisms underlying light-induced resetting of the circadian clock in the green alga Chlamydomonas Takuya Matsuo (Nagoya University, Japan) on-site, C000720
17:47 - 17:57	Quantity regulation of TOC1 and PRR5 for temperature compensation in the Arabidopsis circadian clock [Short Talk]
17:57 - 18:00	Akari Maeda (Nagoya university, Japan) on-site, C000653 Closing remarks

Concurrent 09	Guard cell signalling and metabolism
Application#: C23 Day 2: Tue. Jun. 6	Organized by: Diana Santelia (ETH Zurich), Toshinori Kinoshita (Nagoya University) Over the past few years, it has become evident that guard cell signalling and membrane ion transport are tightly coordinated with the metabolic changes occurring within the guard cells. How this intricate network is regulated at the molecular level is a fascinating question with global influence. In our session, we will discuss some of the most recent breakthrough discoveries on this topic.
16:30 - 16:32 16:32 - 16:40	Opening remarks Light regulation of stomatal movement and plasma membrane H+-ATPase in guard cells Toshinori Kinoshita (ITbM, Nagoya University, Japan) on-site, C000748
16:41 - 17:06	Sugars are mesophyll messengers regulating stomatal opening under red light Yotam Zait (Hebrew University of Jerusalem, Israel) on-site, C000834
17:07 - 17:32	Hydrogen peroxide promotes stomatal development and opening through inducing the nuclear localization of KIN10 Mingyi Bai (Shandong University, China) on-site, C000231
17:33 - 17:41	Investigating the Role of Carbohydrate Metabolism in Bacterial-Triggered Stomatal Movements Using the Model System Arabidopsis thaliana and Pseudomonas syringe pv tomato [Short Talk]
17:42 - 17:50	Lucia Piro (ETH Zurich, Switzerland) on-site, C000435 Phosphorylation of WD-repeat protein WDR by phototropins is essential for starch degradation to promote stomatal opening [Short Talk] Shota Yamauchi (Yamaguchi University, Japan) on-site, C000214
17:51 - 17:59	Stomatal CO2/bicarbonate Sensor Consists of Two Interacting Protein Kinases HT1 and MPK4/12 in Arabidopsis [Short Talk] Yohei Takahashi (Nagoya University, Japan) on-site, C000543
17:59 - 18:00	Closing remarks
Concurrent 10	Development and environmental responses: What are kept and what are lost over the evolutionary history of land plants
Application#: C14 Day 2: Tue. Jun. 6	Organized by: Daisuke Urano (Temasek Life Sciences Laboratory), Kimitsune Ishizaki (Kobe University) Developmental strategies for adaptations to ever-changing environment have been diversified during the long history of land plant evolution. This session focuses on developmental processes and stress responses commonly present or different between the bryophyte models and Arabidopsis, and discusses how the complexity, specificity, and divergence have evolved.
16:30 - 16:31	Opening remarks
16:31 - 16:49	Adapting to Adversity: Evolutionary Insights into G-protein Networks and Stress Readiness in Land Plants Ting-Ying Wu (IPMB, AS, Taiwan) on-site, C000111
16:50 - 17:08	Reproductive strategy control by a Marchantia GRAS transcriptional regulator Sebastian Schornack (University of Cambridge, Sainsbury Laboratory, United Kingdom) on-site, C000693
17:09 - 17:27	Functional evolution of thermospermine in land plants Miguel Blázquez (IBMCP (CSIC-U Politècnica de València), Spain) on-site, C000776
17:28 - 17:46	Cross-stress gene expression atlas of Marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses Marek Mutwil (Nanyang Technological University, Singapore) on-site, C000270
17:47 - 17:59	Analysis of stem cell-promoting CLE peptide signaling in the shoot apical meristems of land plants [Short Talk]
17:59 - 18:00	Yuki Hirakawa (Gakushuin University, Japan) on-site, C000664 Closing remarks

Concurrent 11	Role of biomolecular condensates in abiotic stress signaling
Application#: C24 Day 2: Tue. Jun. 6	Organized by: Monika Chodasiewicz (King Abdullah University of Science and Technology (KAUST)), Emilio Gutierrez-Beltran (University of Sevilla) The session focuses on the role of biomolecular condensates in abiotic stress response. Abstracts
16:30 - 16:35 16:35 - 16:55	related to BMC, formation mechanism, composition of BMC under abiotic stress are very welcome. Opening remarks Functional idling in membrane-bound condensates
16:56 - 17:16	Panagiotis Moschou (University of Crete, Greece) on-site, C000243 Uncovering the function of FLOE1, a phase separating and prion-like hydration sensor protein involved in seed germination Sterling Field (Carnegie Institution for Science, USA) on-site, C000805
17:17 - 17:30	Control of meiosis under heat stress [Short Talk] Arp Schnittger (University of Hamburg, Germany) on-site, C000047
17:31 - 17:44	Heat-regulated phosphorylation of TOT43 is a switch for stress granule association to contribute to heat tolerance in Arabidopsis [Short Talk] Shao-Li Yang (VIB-UGent Center for Plant Systems Biology, Belgium) on-site, C000046
17:45 - 17:58	Characterization of Arabidopsis ECT family in stress tolerance and stress granules assembly [Short Talk] Nicolas Figueroa Fuentealba (King Abdullah University of Science and Technology (KAUST), Saudi Arabia) on-site, C000249
17:58 - 18:00	Closing remarks
Concurrent 12	Translation regulation in plants
Application#: C34	Organized by: Catharina Merchante (Universidad de Málaga), Gemma Sans-Coll (Universidad de Málaga), Jose Antonio Duarte-Conde (Universidad de Málaga)
Day 2: Tue. Jun. 6	Translation is an integral component of the Central Dogma of molecular biology. Although its general mechanism is relatively well understood, little is known about the selective translation of specific mRNAs and its regulation. The emergence of technologies that allow in-depth study of translation resulted in new plant-specific translation mechanisms being unveiled and translationally-regulated mRNAs have been found to be key in the plant's adaptational responses. Recent examples have demonstrated the biological significance of translational regulation in plants and its potential in the generation of new, powerful biotechnological tools.
16:30 - 16:32	Opening remarks
16:32 - 16:44	Uncovering the Hidden Message of mRNAs: The Exploration of Alternative Translation Initiation Sites Ming-Jung Liu (Academia Sinica, Taiwan) on-site, C000454
16:45 - 16:57	Diel and Circadian Dynamics of Translation in Arabidopsis via Ribosome Profiling Michael Ting (Max Planck Institute of Molecular Plant Physiology, Germany) on-site, C000427
16:58 - 17:10	Dynamic regulation of translation upon pathogen infection Jinlong Wang (Duke University, USA) online, C000221
17:11 - 17:22	NMD and translation of intergenic splicing-mediated polycistronic transcripts [Short Talk] Yukio Kurihara (Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan) on-site, C000390
17:23 - 17:34	Plant miRNA-target 3'-end pairing affects miRNA-mediated translational repression [Short Talk]
17:35 - 17:46	Ho-Ming Chen (Academia Sinica, Taiwan) on-site, C000247 Deciphering the role of specialized ribosomes in plants´ translation efficiency [Short Talk] Jose Duarte-Conde (University of Málaga, Spain) on-site, C000512
17:47 - 17:58	Translation-coupled Epigenetic Regulation of Transposable Elements in Plants [Short Talk] Zhen Lei (CAS Center for Excellence in Molecular Plant Sciences, China) on-site, C000064
17:58 - 18:00	Closing remarks

Poster discussion (Odd number)

18:00 - 20:00

Day 3 (Wed. Jun. 7)

Concurrent 13	Integration of Arabidopsis and crop research in plant biotic interactions
Application#: C33	Organized by: Yusuke Saijo (Nara Institute of Science and Technology), Kenichi Tsuda (Huazhong Agricultural University)
Day 3: Wed. Jun. 7	This session will present and discuss comparative and integrative studies on Arabidopsis and crop plants in different areas of plant biotic interactions. We hope this helps to stimulate a new way of thinking, elucidate new molecular principles and develop solutions for SDGs, in the research field and beyond.
9:00 - 9:01	Opening remarks
9:01 - 9:15	Mitigation of plant growth-defense trade-off through damage-associated Pep peptides and receptors under phosphate deficiency Yusuke Saijo (Nara Institute of Science and Technology, Japan) on-site, C000678
9:16 - 9:31	Interactions between plants and root microbiome in rice and Arabidopsis Yang Bai (Institute of Genetics and Developmental Biology, China) online, C000816
9:32 - 9:46	RCR1, a pericycle-expressed ion channel, safe-guards the stele and confers broadspectrum resistance to clubroot Wei Wang (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China) on- site, C000796
9:47 - 10:01	Studying the genetic basis for plant-microbe associations using a synthetic biology approach [Short Talk]
10:02 - 10:13	Jose Dinneny (Stanford University, USA) on-site, C000591 Drought Recovery Induced Immunity Confers Pathogen Resistance [Short Talk] Natanella Illouz-Eliaz (Salk Institute, USA) on-site, C000252
10:14 - 10:29	Plant immunity and microbiota tame potentially harmful commensal bacteria Kenichi Tsuda (Huazhong Agricultural University, China) on-site, C000799
10:29 - 10:30	Closing remarks
Concurrent 14	Stress-induced signalling peptides
Application#: C36 Day 3: Wed. Jun. 7 9:00 - 9:01	Organized by: Nijat Imin (Western Sydney University), Cyril Zipfel (University of Zurich) The workshop focuses on plant peptides and receptors, other components of signalling pathways and downstream signalling events in plant development, adaptation, and in particular plant response to the environment. Opening remarks
9:01 - 9:15	Regulation and execution of plant immunity by phytocytokines Cyril Zipfel (Institute of Plant and Microbial Biology, University of Zurich, Switzerland) on-site, C000115
9:16 - 9:30	TBA (Alisa Huffaker) (TBA, TBA) TBA, TBA
9:31 - 9:45	Elucidating the peptide-receptor signalling pathways that regulates root architecture and nitrogen acquisition
9:46 - 10:00	Nijat Imin (University of Auckland, New Zealand) on-site, C000684 Coordination of cell surface immunity and N limitation by CEP-mediated signalling Martin Stegmann (Technical University Munich, Germany) on-site, C000040
10:01 - 10:10	A cell wall-modifying gene-dependent CLE peptide transport in conferring drought resistance [Short Talk] Satashi Endo (Kyota University of Advanced Science, Japan) on site. C000077
10:11 - 10:20	Satoshi Endo (Kyoto University of Advanced Science, Japan) on-site, C000077 An Evolutionarily Conserved Long-distance Migrating Peptide Regulates Lignin Biosynthesis Pathway and Plant Immunity [Short Talk] Ying-Lan Chen (National Cheng Kung University, Taiwan) on-site, C000701
10:21 - 10:30	The phytocytokine AtCAPE9 and its receptor AtCAPER1 functions on plant systemic stomatal immunity [Short Talk] Chi-Hsin Chang (Agricultural Biotechnology Research Center, Academia Sinica, Taiwan) on-site, C000016

Concurrent 15	Arabidopsis relatives from laboratories to natural fields
Application#: C16 Day 3: Wed. Jun. 7	Organized by: Kentaro K. Shimizu (University of Zurich), Hiroshi Kudoh (Kyoto University) The phenotype of wild-type and mutants in natural fields is often distinct from that in regulated laboratory conditions. Recently, Arabidopsis and its relatives are emerging as model systems to understand gene function in naturally fluctuating environments, which is coined in natura. The workshop will welcome researchers from diverse disciplines including long-term regular monitoring of gene expression, epigenome and phenome in natura, predicting plant responses to global climate changes, ecological networks of diverse herbivores and pathogens, laboratory experiments capturing natural complexity such as the food web.
9:00 - 9:03	Opening remarks
9:03 - 9:22	A keystone genes underlies the persistence of an experimental food web Matthew Barbour (Université de Sherbrooke, Canada) on-site, C000770
9:23 - 9:42	Seasonality of virus-host interactions between Turnip mosaic virus and Arabidopsis halleri during the long-term infection in a natural environment Mie Honjo (Center for Ecological Research, Kyoto University, Japan) on-site, C000402
9:43 - 10:02	Keystone pairs of Arabidopsis accessions increase plant resistance to field herbivory Yasuhiro Sato (University of Zurich, Switzerland) on-site, C000118
10:03 - 10:14	Rapid evolution in Arabidopsis thaliana in global field experiments in the pan-genomic era [Short Talk]
	Xing Wu (Carnegie Institution for Science, USA) on-site, C000635
10:15 - 10:26	Time-series field phenotyping system PlantServation using machine learning revealed seasonal pigment fluctuation trends in diploid and polyploid Arabidopsis [Short Talk] Toshiaki Tameshige (KIBR, Yokohama City Univ., Japan) on-site, C000567
10:26 - 10:30	Closing remarks
0	
Concurrent 16	Plant epigenetics and chromatin dynamics
Application#: C01 Day 3: Wed. Jun. 7	Organized by: Robert Schmitz (University of Georgia), Xuehua Zhong (Washington University, St. Louis) Chromatin modifications have emerged as an important regulatory mechanism for versatile biological processes. Although the DNA in each nucleus of an individual is essentially identical, the manner in which it is interpreted by the cell is dependent on its spatial and environmental context. Research incorporating innovative methods to unravel these mechanisms as well as those that incorporate the study of histone and DNA modifications, transcription factor dynamics, small RNAs, and chromatin structure will be featured within this session.
Application#: C01 Day 3: Wed. Jun. 7 9:00 - 9:01	Organized by: Robert Schmitz (University of Georgia), Xuehua Zhong (Washington University, St. Louis) Chromatin modifications have emerged as an important regulatory mechanism for versatile biological processes. Although the DNA in each nucleus of an individual is essentially identical, the manner in which it is interpreted by the cell is dependent on its spatial and environmental context. Research incorporating innovative methods to unravel these mechanisms as well as those that incorporate the study of histone and DNA modifications, transcription factor dynamics, small RNAs, and chromatin structure will be featured within this session. Opening remarks
Application#: C01 Day 3: Wed. Jun. 7	 Organized by: Robert Schmitz (University of Georgia), Xuehua Zhong (Washington University, St. Louis) Chromatin modifications have emerged as an important regulatory mechanism for versatile biological processes. Although the DNA in each nucleus of an individual is essentially identical, the manner in which it is interpreted by the cell is dependent on its spatial and environmental context. Research incorporating innovative methods to unravel these mechanisms as well as those that incorporate the study of histone and DNA modifications, transcription factor dynamics, small RNAs, and chromatin structure will be featured within this session. Opening remarks Molecular basis of non-CG methylation landscape in plants
Application#: C01 Day 3: Wed. Jun. 7 9:00 - 9:01	Organized by: Robert Schmitz (University of Georgia), Xuehua Zhong (Washington University, St. Louis) Chromatin modifications have emerged as an important regulatory mechanism for versatile biological processes. Although the DNA in each nucleus of an individual is essentially identical, the manner in which it is interpreted by the cell is dependent on its spatial and environmental context. Research incorporating innovative methods to unravel these mechanisms as well as those that incorporate the study of histone and DNA modifications, transcription factor dynamics, small RNAs, and chromatin structure will be featured within this session. Opening remarks
Application#: C01 Day 3: Wed. Jun. 7 9:00 - 9:01 9:01 - 9:15	 Organized by: Robert Schmitz (University of Georgia), Xuehua Zhong (Washington University, St. Louis) Chromatin modifications have emerged as an important regulatory mechanism for versatile biological processes. Although the DNA in each nucleus of an individual is essentially identical, the manner in which it is interpreted by the cell is dependent on its spatial and environmental context. Research incorporating innovative methods to unravel these mechanisms as well as those that incorporate the study of histone and DNA modifications, transcription factor dynamics, small RNAs, and chromatin structure will be featured within this session. Opening remarks Molecular basis of non-CG methylation landscape in plants Xuehua Zhong (Washington University in St. Louis, USA) on-site, C000145 Dynamic regulatory mechanism of H3K27me3 demethylase REF6 responding to environment Xiaofeng Cao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China)
Application#: C01 Day 3: Wed. Jun. 7 9:00 - 9:01 9:01 - 9:15 9:16 - 9:30	 Organized by: Robert Schmitz (University of Georgia), Xuehua Zhong (Washington University, St. Louis) Chromatin modifications have emerged as an important regulatory mechanism for versatile biological processes. Although the DNA in each nucleus of an individual is essentially identical, the manner in which it is interpreted by the cell is dependent on its spatial and environmental context. Research incorporating innovative methods to unravel these mechanisms as well as those that incorporate the study of histone and DNA modifications, transcription factor dynamics, small RNAs, and chromatin structure will be featured within this session. Opening remarks Molecular basis of non-CG methylation landscape in plants Xuehua Zhong (Washington University in St. Louis, USA) on-site, C000145 Dynamic regulatory mechanism of H3K27me3 demethylase REF6 responding to environment Xiaofeng Cao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China) on-site, C000861 Crosstalk among epigenetic marks during establishment of heterochromatin
Application#: CO1 Day 3: Wed. Jun. 7 9:00 - 9:01 9:01 - 9:15 9:16 - 9:30 9:31 - 9:45	 Organized by: Robert Schmitz (University of Georgia), Xuehua Zhong (Washington University, St. Louis) Chromatin modifications have emerged as an important regulatory mechanism for versatile biological processes. Although the DNA in each nucleus of an individual is essentially identical, the manner in which it is interpreted by the cell is dependent on its spatial and environmental context. Research incorporating innovative methods to unravel these mechanisms as well as those that incorporate the study of histone and DNA modifications, transcription factor dynamics, small RNAs, and chromatin structure will be featured within this session. Opening remarks Molecular basis of non-CG methylation landscape in plants Xuehua Zhong (Washington University in St. Louis, USA) on-site, C000145 Dynamic regulatory mechanism of H3K27me3 demethylase REF6 responding to environment Xiaofeng Cao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China) on-site, C000861 Crosstalk among epigenetic marks during establishment of heterochromatin Taiko To (The University of Tokyo, School of Science, Japan) on-site, C000376 An evolutionary epigenetic clock in plants
Application#: C01 Day 3: Wed. Jun. 7 9:00 - 9:01 9:01 - 9:01 9:16 - 9:30 9:31 - 9:45 9:46 - 10:00	 Organized by: Robert Schmitz (University of Georgia), Xuehua Zhong (Washington University, St. Louis) Chromatin modifications have emerged as an important regulatory mechanism for versatile biological processes. Although the DNA in each nucleus of an individual is essentially identical, the manner in which it is interpreted by the cell is dependent on its spatial and environmental context. Research incorporating innovative methods to unravel these mechanisms as well as those that incorporate the study of histone and DNA modifications, transcription factor dynamics, small RNAs, and chromatin structure will be featured within this session. Opening remarks Molecular basis of non-CG methylation landscape in plants Xuehua Zhong (Washington University in St. Louis, USA) on-site, C000145 Dynamic regulatory mechanism of H3K27me3 demethylase REF6 responding to environment Xiaofeng Cao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China) on-site, C000861 Crosstalk among epigenetic marks during establishment of heterochromatin Taiko To (The University of Tokyo, School of Science, Japan) on-site, C000376 An evolutionary epigenetic clock in plants Frank Johannes (Technical University of Munich, Germany) on-site, C000233 Distinct chromatin signatures in the Arabidopsis male gametophyte [Short Talk]

Concurrent 17	Hidden messages of RNAs for environmental responses
Application#: C22 Day 3: Wed. Jun. 7	Organized by: Ming-Jung Liu (Academia Sinica), Misato Ohtani (University of Tokyo) How do the regulatory networks between environmental factors and RNA molecules trigger plant physiological and stress responses? This concurrent session will feature the recent advances in RNA sequences- and structure-based strategies for regulating gene expression. How plant mRNAs produce novel proteins, how non-coding RNAs and RNA-binding proteins regulate RNA fates, and how RNA functionalities are diversified both at genome-wide and single-molecule levels will be discussed.
9:00 - 9:02	Opening remarks
9:02 - 9:15	Long non coding RNAs modulate the transcriptome by modifying alternative splicing regulations in Arabidopsis
9:16 - 9:29	Martin Crespi (Institute of Plant Sciences Paris Saclay IPS2, France) online, C000417 Plants can sense and respond to environmental stress via pre-mRNA splicing regulation Misste Oktobi (The University of Talwa, January) on site 2000440
9:30 - 9:43	Misato Ohtani (The University of Tokyo, Japan) on-site, C000416 RNA structure, a hidden regulator in living cells
9:44 - 9:57	Yiliang Ding (John Innes Centre, United Kingdom) on-site, C000060 Prevalent Unannotated ORFs Revealed by Improved Super-Resolution Ribosome Profiling Polly Hsu (Michigan State University, USA) online, C000530
9:58 - 10:11	Ribosomal RNA turnover and cellular homeostasis Gustavo MacIntosh (Iowa State University, USA) on-site, C000747
10:12 - 10:19	Arabidopsis DXO1, a decapping enzyme for NAD-capped RNAs, activates RNMT1 to methylate the mRNA guanosine cap [Short Talk] Chen Xiao (HongKong Baptist University, Hong Kong) on-site, C000342
10:20 - 10:27	siRNAs derived from nitrate reductases, NIA1 and NIA2, play vital roles in growth and stress adaptation [Short Talk]
10:27 - 10:30	Yan Yan (Southern University of Science and Technology, China) on-site, C000171 Closing remarks
Concurrent 18	Making contacts: Membrane contact sites between plant organelles
Concurrent 18 Application#: C08 Day 3: Wed. Jun. 7	Organized by: Joe McKenna (University of Warwick), Emily Breeze (University of Warwick) Membrane contact sites (MCSs) are defined as areas of close apposition and tethering between the membranes of two organelles but crucially, the membranes do not fuse. These sites function as specific microdomains for the bi-directional exchange of molecular cargo and are linked to the propagation of intracellular signals enabling a coordinated cellular response to internal and external cues. This session will bring together plant cell biologists researching the molecular mechanisms of MCS tethers using new experimental tools and imaging techniques, with plant physiologists and pathologists interested in the wider role of MCSs in developmental and stress signalling.
Application#: C08 Day 3: Wed. Jun. 7	Organized by: Joe McKenna (University of Warwick), Emily Breeze (University of Warwick) Membrane contact sites (MCSs) are defined as areas of close apposition and tethering between the membranes of two organelles but crucially, the membranes do not fuse. These sites function as specific microdomains for the bi-directional exchange of molecular cargo and are linked to the propagation of intracellular signals enabling a coordinated cellular response to internal and external cues. This session will bring together plant cell biologists researching the molecular mechanisms of MCS tethers using new experimental tools and imaging techniques, with plant physiologists and pathologists interested in the
Application#: C08 Day 3: Wed. Jun. 7 9:00 - 9:02	 Organized by: Joe McKenna (University of Warwick), Emily Breeze (University of Warwick) Membrane contact sites (MCSs) are defined as areas of close apposition and tethering between the membranes of two organelles but crucially, the membranes do not fuse. These sites function as specific microdomains for the bi-directional exchange of molecular cargo and are linked to the propagation of intracellular signals enabling a coordinated cellular response to internal and external cues. This session will bring together plant cell biologists researching the molecular mechanisms of MCS tethers using new experimental tools and imaging techniques, with plant physiologists and pathologists interested in the wider role of MCSs in developmental and stress signalling. Opening remarks Near-UV light signaling at the chloroplast-endoplasmic reticulum-plasma membrane contact site. Lawrence Griffing (Texas A&M University, USA) on-site, C000762 Plant endoplasmic reticulum-membrane contact sites and selective autophagy
Application#: C08 Day 3: Wed. Jun. 7 9:00 - 9:02 9:02 - 9:20	 Organized by: Joe McKenna (University of Warwick), Emily Breeze (University of Warwick) Membrane contact sites (MCSs) are defined as areas of close apposition and tethering between the membranes of two organelles but crucially, the membranes do not fuse. These sites function as specific microdomains for the bi-directional exchange of molecular cargo and are linked to the propagation of intracellular signals enabling a coordinated cellular response to internal and external cues. This session will bring together plant cell biologists researching the molecular mechanisms of MCS tethers using new experimental tools and imaging techniques, with plant physiologists and pathologists interested in the wider role of MCSs in developmental and stress signalling. Opening remarks Near-UV light signaling at the chloroplast-endoplasmic reticulum-plasma membrane contact site. Lawrence Griffing (Texas A&M University, USA) on-site, C000762 Plant endoplasmic reticulum-membrane contact sites and selective autophagy Pengwei Wang (Huazhong Agricultural University, China) on-site, C000444 Lipid transport at chloroplast-mitochondria contact sites in Arabidopsis thaliana Morgane Michaud (Laboratoire de Physiologie Cellulaire et Végétale, CNRS, UGA, INRAE, CEA, France)
Application#: C08 Day 3: Wed. Jun. 7 9:00 - 9:02 9:02 - 9:20 9:21 - 9:39	 Organized by: Joe McKenna (University of Warwick), Emily Breeze (University of Warwick) Membrane contact sites (MCSs) are defined as areas of close apposition and tethering between the membranes of two organelles but crucially, the membranes do not fuse. These sites function as specific microdomains for the bi-directional exchange of molecular cargo and are linked to the propagation of intracellular signals enabling a coordinated cellular response to internal and external cues. This session will bring together plant cell biologists researching the molecular mechanisms of MCS tethers using new experimental tools and imaging techniques, with plant physiologists and pathologists interested in the wider role of MCSs in developmental and stress signalling. Opening remarks Near-UV light signaling at the chloroplast-endoplasmic reticulum-plasma membrane contact site. Lawrence Griffing (Texas A&M University, USA) on-site, C000762 Plant endoplasmic reticulum-membrane contact sites and selective autophagy Pengwei Wang (Huazhong Agricultural University, China) on-site, C000444 Lipid transport at chloroplast-mitochondria contact sites in Arabidopsis thaliana Morgane Michaud (Laboratoire de Physiologie Cellulaire et Végétale, CNRS, UGA, INRAE, CEA, France) on-site, C000438 Structure and functions of plant synaptotagmins Miguel Botella (Instituto de Hortofruticultura Subtropical y Mediterránea UMA-CSIC, Spain) on-site, C000329
Application#: C08 Day 3: Wed. Jun. 7 9:00 - 9:02 9:02 - 9:20 9:21 - 9:39 9:40 - 9:58	 Organized by: Joe McKenna (University of Warwick), Emily Breeze (University of Warwick) Membrane contact sites (MCSs) are defined as areas of close apposition and tethering between the membranes of two organelles but crucially, the membranes do not fuse. These sites function as specific microdomains for the bi-directional exchange of molecular cargo and are linked to the propagation of intracellular signals enabling a coordinated cellular response to internal and external cues. This session will bring together plant cell biologists researching the molecular mechanisms of MCS tethers using new experimental tools and imaging techniques, with plant physiologists and pathologists interested in the wider role of MCSs in developmental and stress signalling. Opening remarks Near-UV light signaling at the chloroplast-endoplasmic reticulum-plasma membrane contact site. Lawrence Griffing (Texas A&M University, USA) on-site, C000762 Plant endoplasmic reticulum-membrane contact sites and selective autophagy Pengwei Wang (Huazhong Agricultural University, China) on-site, C000444 Lipid transport at chloroplast-mitochondria contact sites in Arabidopsis thaliana Morgane Michaud (Laboratoire de Physiologie Cellulaire et Végétale, CNRS, UGA, INRAE, CEA, France) on-site, C000438 Structure and functions of plant synaptotagmins Miguel Botella (Instituto de Hortofruticultura Subtropical y Mediterránea UMA-CSIC, Spain) on-site, C000329 SEED LIPID DROPLET PROTEIN 1 and 2 and LD-PLASMA MEMBRANE ADAPTOR form a lipid droplet-plasma membrane contact site that might play a role under stress [Short Talk]
Application#: C08 Day 3: Wed. Jun. 7 9:00 - 9:02 9:02 - 9:20 9:21 - 9:39 9:40 - 9:58 9:59 - 10:17	 Organized by: Joe McKenna (University of Warwick), Emily Breeze (University of Warwick) Membrane contact sites (MCSs) are defined as areas of close apposition and tethering between the membranes of two organelles but crucially, the membranes do not fuse. These sites function as specific microdomains for the bi-directional exchange of molecular cargo and are linked to the propagation of intracellular signals enabling a coordinated cellular response to internal and external cues. This session will bring together plant cell biologists researching the molecular mechanisms of MCS tethers using new experimental tools and imaging techniques, with plant physiologists and pathologists interested in the wider role of MCSs in developmental and stress signalling. Opening remarks Near-UV light signaling at the chloroplast-endoplasmic reticulum-plasma membrane contact site. Lawrence Griffing (Texas A&M University, USA) on-site, C000762 Plant endoplasmic reticulum-membrane contact sites and selective autophagy Pengwei Wang (Huazhong Agricultural University, China) on-site, C000444 Lipid transport at chloroplast-mitochondria contact sites in Arabidopsis thaliana Morgane Michaud (Laboratoire de Physiologie Cellulaire et Végétale, CNRS, UGA, INRAE, CEA, France) on-site, C000438 Structure and functions of plant synaptotagmins Miguel Botella (Instituto de Hortofruticultura Subtropical y Mediterránea UMA-CSIC, Spain) on-site, C000329 SEED LIPID DROPLET PROTEIN 1 and 2 and LD-PLASMA MEMBRANE ADAPTOR form a lipid

Concurrent 19	Temporal regulation of environmental responses, growth, and development
Application#: C09	Organized by: Takato Imaizumi (University of Washington), Dawn Nagel (University of California, Riverside)
Day 3: Wed. Jun. 7	Plant cells respond to the same types of stimuli differently depending on when (time of the day, season, developmental ages, etc.), how often (frequency, gradual changes, and stochasticity), and how long (duration – secs, mins, hours, days, etc and kinetics) they were given. In this session, we will discuss plant responses (from cellular to developmental) that are impacted by environmental stress and regulated by time in different scales and context.
11:00 - 11:02 11:02 - 11:17	Opening remarks The induction of florigen FLOWERING LOCUS T gene is controlled by phytochrome A high- irradiance response and external coincidence mechanism under natural long-day conditions
	Takato Imaizumi (University of Washington, USA) on-site, C000184
11:18 - 11:33	Cold tolerance of membranes is a matter of timing and metabolic state – not just a saturation story
11:34 - 11:49	Rebecca Roston (University of Nebraska-Lincoln, USA) on-site, C000539 Circadian effects in seconds, minutes, hours, weeks and months. Alex Webb (University of Cambridge, United Kingdom) on-site, C000106
11:50 - 11:59	Phloem cells - from single cell transcriptomics to development and function [Short Talk] Jiyun Kim (Heinrich Heine University Düsseldorf, Germany) on-site, C000504
12:00 - 12:09	Nitrogen-responsive SnRK1-FBH4 module affects flowering time and metabolism in Arabidopsis [Short Talk] Miho Sanagi (Hokkaido University, Japan) on-site, C000021
12:10 - 12:19	Rational approaches to synchronizing germination in seed populations [Short Talk] Liam Walker (University of Warwick, United Kingdom) on-site, C000453
12:20 - 12:29	A Comparative Study of Adaptive Stress Tolerance in the Brassicaceae Family [Short Talk] Andrea Ramirez (Stanford University, USA) on-site, C000050
12:29 - 12:30	Closing remarks
Concurrent 20	Interdisciplinary approaches applied to plasmodesmata research
Application#: C15 Day 3: Wed. Jun. 7	Organized by: Yoselin Benitez-Alfonso (Centre for Plant Sciences. University of Leeds) Plasmodesmata provide a route for the transport of signalling proteins and RNAs, metabolites and hormones to coordinate cellular functions within tissues and across distant organs. This session aims to uncover the broad range of interdisciplinary approaches that have been recently applied to understand plasmodesmata formation and function. We will hear from researchers combining genetic and bioorthogonal chemistry approaches, and physico mechanical models to dissect plasmodesmata function as well as developing new devices and using interfamily grafts and bryophytes to follow Plasmodesmata development and their role in multicellularity. We will also discuss the potential of engineering this
	Organized by: Yoselin Benitez-Alfonso (Centre for Plant Sciences. University of Leeds) Plasmodesmata provide a route for the transport of signalling proteins and RNAs, metabolites and hormones to coordinate cellular functions within tissues and across distant organs. This session aims to uncover the broad range of interdisciplinary approaches that have been recently applied to understand plasmodesmata formation and function. We will hear from researchers combining genetic and bioorthogonal chemistry approaches, and physico mechanical models to dissect plasmodesmata function as well as developing new devices and using interfamily grafts and bryophytes to follow Plasmodesmata development and their role in multicellularity. We will also discuss the potential of engineering this mechanism to improve crops in a changing environment Opening remarks
Day 3: Wed. Jun. 7	Organized by: Yoselin Benitez-Alfonso (Centre for Plant Sciences. University of Leeds) Plasmodesmata provide a route for the transport of signalling proteins and RNAs, metabolites and hormones to coordinate cellular functions within tissues and across distant organs. This session aims to uncover the broad range of interdisciplinary approaches that have been recently applied to understand plasmodesmata formation and function. We will hear from researchers combining genetic and bioorthogonal chemistry approaches, and physico mechanical models to dissect plasmodesmata function as well as developing new devices and using interfamily grafts and bryophytes to follow Plasmodesmata development and their role in multicellularity. We will also discuss the potential of engineering this mechanism to improve crops in a changing environment
Day 3: Wed. Jun. 7	 Organized by: Yoselin Benitez-Alfonso (Centre for Plant Sciences. University of Leeds) Plasmodesmata provide a route for the transport of signalling proteins and RNAs, metabolites and hormones to coordinate cellular functions within tissues and across distant organs. This session aims to uncover the broad range of interdisciplinary approaches that have been recently applied to understand plasmodesmata formation and function. We will hear from researchers combining genetic and bioorthogonal chemistry approaches, and physico mechanical models to dissect plasmodesmata function as well as developing new devices and using interfamily grafts and bryophytes to follow Plasmodesmata development and their role in multicellularity. We will also discuss the potential of engineering this mechanism to improve crops in a changing environment Opening remarks Plasmodesmata walls: a study of the mechanical and structural properties that control their biological function Yoselin Benitez-Alfonso (Centre for Plant Sciences. University of Leeds, United Kingdom) on-site, C000349 The development of a microfluidic chip for entrapping tobacco BY-2 cells has enabled the analysis of plasmodesmata permeability using cultured cells in real-time.
Day 3: Wed. Jun. 7 11:00 - 11:01 11:01 - 11:15	 Organized by: Yoselin Benitez-Alfonso (Centre for Plant Sciences. University of Leeds) Plasmodesmata provide a route for the transport of signalling proteins and RNAs, metabolites and hormones to coordinate cellular functions within tissues and across distant organs. This session aims to uncover the broad range of interdisciplinary approaches that have been recently applied to understand plasmodesmata formation and function. We will hear from researchers combining genetic and bioorthogonal chemistry approaches, and physico mechanical models to dissect plasmodesmata function as well as developing new devices and using interfamily grafts and bryophytes to follow Plasmodesmata development and their role in multicellularity. We will also discuss the potential of engineering this mechanism to improve crops in a changing environment Opening remarks Plasmodesmata walls: a study of the mechanical and structural properties that control their biological function Yoselin Benitez-Alfonso (Centre for Plant Sciences. University of Leeds, United Kingdom) on-site, C000349 The development of a microfluidic chip for entrapping tobacco BY-2 cells has enabled the analysis of plasmodesmata permeability using cultured cells in real-time. Ken-ichi Kurotani (Nagoya Univ. Bioscience and Biotechnology Center, Japan) on-site, C000478 Regulation of brassinosteroid homeostasis in the Arabidopsis root Jenny Russinova (VIB-UGent, Belgium) on-site, C000468
Day 3: Wed. Jun. 7 11:00 - 11:01 11:01 - 11:15 11:16 - 11:30	 Organized by: Yoselin Benitez-Alfonso (Centre for Plant Sciences. University of Leeds) Plasmodesmata provide a route for the transport of signalling proteins and RNAs, metabolites and hormones to coordinate cellular functions within tissues and across distant organs. This session aims to uncover the broad range of interdisciplinary approaches that have been recently applied to understand plasmodesmata formation and function. We will hear from researchers combining genetic and bioorthogonal chemistry approaches, and physico mechanical models to dissect plasmodesmata function as well as developing new devices and using interfamily grafts and bryophytes to follow Plasmodesmata development and their role in multicellularity. We will also discuss the potential of engineering this mechanism to improve crops in a changing environment Opening remarks Plasmodesmata walls: a study of the mechanical and structural properties that control their biological function Yoselin Benitez-Alfonso (Centre for Plant Sciences. University of Leeds, United Kingdom) on-site, C000349 The development of a microfluidic chip for entrapping tobacco BY-2 cells has enabled the analysis of plasmodesmata permeability using cultured cells in real-time. Ken-ichi Kurotani (Nagoya Univ. Bioscience and Biotechnology Center, Japan) on-site, C000478 Regulation of brassinosteroid homeostasis in the Arabidopsis root
Day 3: Wed. Jun. 7 11:00 - 11:01 11:01 - 11:15 11:16 - 11:30 11:31 - 11:45	 Organized by: Yoselin Benitez-Alfonso (Centre for Plant Sciences. University of Leeds) Plasmodesmata provide a route for the transport of signalling proteins and RNAs, metabolites and hormones to coordinate cellular functions within tissues and across distant organs. This session aims to uncover the broad range of interdisciplinary approaches that have been recently applied to understand plasmodesmata formation and function. We will hear from researchers combining genetic and bioorthogonal chemistry approaches, and physico mechanical models to dissect plasmodesmata function as well as developing new devices and using interfamily grafts and bryophytes to follow Plasmodesmata development and their role in multicellularity. We will also discuss the potential of engineering this mechanism to improve crops in a changing environment Opening remarks Plasmodesmata walls: a study of the mechanical and structural properties that control their biological function Yoselin Benitez-Alfonso (Centre for Plant Sciences. University of Leeds, United Kingdom) on-site, C000349 The development of a microfluidic chip for entrapping tobacco BY-2 cells has enabled the analysis of plasmodesmata permeability using cultured cells in real-time. Ken-ichi Kurotani (Nagoya Univ. Bioscience and Biotechnology Center, Japan) on-site, C000478 Regulation of brassinosteroid homeostasis in the Arabidopsis root Jenny Russinova (VIB-UGent, Belgium) on-site, C000468 Environmental fluctuation and regulation of intercellular communication in the moss, Physcomitrium patens
Day 3: Wed. Jun. 7 11:00 - 11:01 11:01 - 11:15 11:16 - 11:30 11:31 - 11:45 11:46 - 12:00	 Organized by: Yoselin Benitez-Alfonso (Centre for Plant Sciences. University of Leeds) Plasmodesmata provide a route for the transport of signalling proteins and RNAs, metabolites and hormones to coordinate cellular functions within tissues and across distant organs. This session aims to uncover the broad range of interdisciplinary approaches that have been recently applied to understand plasmodesmata formation and function. We will hear from researchers combining genetic and bioorthogonal chemistry approaches, and physico mechanical models to dissect plasmodesmata function as well as developing new devices and using interfamily grafts and bryophytes to follow Plasmodesmata development and their role in multicellularity. We will also discuss the potential of engineering this mechanism to improve crops in a changing environment Opening remarks Plasmodesmata walls: a study of the mechanical and structural properties that control their biological function Yoselin Benitez-Alfonso (Centre for Plant Sciences. University of Leeds, United Kingdom) on-site, C000349 The development of a microfluidic chip for entrapping tobacco BY-2 cells has enabled the analysis of plasmodesmata permeability using cultured cells in real-time. Ken-ichi Kurotani (Nagoya Univ. Bioscience and Biotechnology Center, Japan) on-site, C000478 Regulation of brassinosteroid homeostasis in the Arabidopsis root Jenny Russinova (VIB-UGent, Belgium) on-site, C000468 Environmental fluctuation and regulation of intercellular communication in the moss, Physcomitrium patens Tomomichi Fujita (Hokkaido University, Japan) on-site, C000738 A long-distance top-down movement of a transcription factor regulating the root phloem development [Short Talk]

Concurrent 21	Molecular signaling in plant-insect interactions
Application#: C13	Organized by: Jyothilakshmi Vadassery (National Institute of Plant Genome Research (NIPGR)), Gen- Ichiro Arimura (Tokyo University of Science)
Day 3: Wed. Jun. 7	Molecular signaling in plant defense against herbivory is an emerging area of study with identity of receptors, channels and early signaling genes that connects it to jasmonate pathway relatively unknown The regulation of phytohormone and glucosinolate pathway by various signaling components are also unexplored. The session will cover the latest discoveries in the field
11:00 - 11:01	Opening remarks
11:01 - 11:17	Geographic, Ecological and Transcriptional Forces Shaping Glucosinolate Defense Metabolite Variation Daniel Kliebenstein (University of California, Davis, USA) on-site, C000185
11:18 - 11:34	Plant defense system in arabidopsis-Spodoptera interactions
	Gen-ichiro Arimura (Tokyo University of Science, Japan) on-site, C000023
11:35 - 11:51	Hunting for insect secreted proteins that modulate plant immunity: Spodoptera litura- Arabidopsis interaction as a model system
	Jyothilakshmi Vadassery (National Institute of Plant Genome Research(NIPGR), Delhi, India) on-site, C000483
11:52 - 12:08	Damage-activated proteolysis as a potential key player in the plant wound response Simon Stael (Swedish University of Agricultural Sciences, Sweden) on-site, C000319
12:09 - 12:18	CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) controls resistance to aphid by altering indole glucosinolate production [Short Talk] Keyan Salzman (Texas A&M University, USA) on-site, C000237
12:19 - 12:28	Is Ca2+-induced activation of Arabidopsis lipoxygenase 2 involved in green leaf volatile burst? [Short Talk] Kenji Matsui (Yamaguchi University, Japan) on-site, C000489
12:28 - 12:30	Closing remarks
Concurrent 22	Molecular condensation for reproductive and biotic stress regulation: From cell biology to biophysical mechanism
Application#: C03	Organized by: Yansong Miao (Nanyang Technological University), Yangnan Gu (University of California Berkeley)
Day 3: Wed. Jun. 7	Biomolecular condensation (BMC) has emerged as a critical regulatory mechanism that dynamically tunes the constituents and biophysical properties of signaling complexes during plant response to diverse developmental and environmental cues. This session focuses on BMC-mediated signaling research that integrates advanced imaging, biochemical, biophysical, and mathematical approaches to understand the spatiotemporal regulation of plant immune responses and reproduction.
11:00 - 11:13	Molecular Condensation at Host-Pathogen Interface for Plant Immunity Yansong Miao (Nanyang Technological University SIngapore, Singapore) on-site, C000123
11:14 - 11:34	Formation of NPR1 condensates promotes cell survival during the plant immune response Xinnian Dong (Howard Hughes Medical Institute and Duke University, USA) on-site, C000790
11:35 - 11:50	Dynamic proteostasis and protein condensation in malectin-like receptor kinase-mediated activation of an intracellular immune receptor Ping He (Texas A&M University, USA) on-site, C000347
11:51 - 12:06	Phenolic acid-induced stress granule formation mediates plant interspecific competition
	Wei Wang (Peking University, China) on-site, C000045
12:07 - 12:22	The compaction of flowering plant sperm through chromatin phase separation
12:23 - 12:30	Xiaoqi Feng (Institute of Science and Technology, Austria, Austria) on-site, C000772 AGO2 condensates behavior after bacterial inoculation [Short Talk] Moriaki Saito (University of California, Riverside, USA) on-site, C000690

Concurrent 23	A systems perspective: Omics integration and modeling
Application#: C25	Organized by: Lisa Van den Broeck (North Carolina State University), Antoni Garcia (Centre for research in agricultural Genomics)
Day 3: Wed. Jun. 7	The characterization and quantification of interconnections among molecules is fundamental to providing a systemic view about how plants integrate, attenuate, and respond to developmental and environmental cues. Complementary, predictive modeling of gene regulatory networks, phosphorylation cascades, hormone signaling, or metabolic pathways are powerful approaches to guide new hypotheses and base future experiments. This session will focus on studies that aim to integrate -omics datasets, unravel molecular networks, and elaborate predictive models to address functional questions in Arabidopsis.
11:00 - 11:03	Opening remarks
11:03 - 11:18	Functional characterization of Arabidopsis protein-coding genes and lincRNAs using multi-omics networks Klaas Vandepoele (VIB-UGent Center for Plant Systems Biology, Belgium) on-site, C000107
11:19 - 11:34	A quantitative model of carbon partitioning during plant cold acclimation Anastasia Kitashova (LMU Munich, Germany) on-site, C000142
11:35 - 11:50	Modelling hormone transport within the Arabidopsis root Kristian Kiradjiev (University of Nottingham, United Kingdom) on-site, C000490
11:51 - 12:06	Understanding the Molecular Mechanisms Underlying FERONIA Receptor Kinase-mediated Signalling Using Multiomics Approach Hongqing Guo (Iowa State University, USA) on-site, C000754
12:07 - 12:17	New elements of cis-regulatory code of plant genes revealed by deep learning models [Short Talk]
12:18 - 12:28	Jedrzej Szymanski (Forschungszentrum Jülich GmbH & Leibniz Institute of Plant Genetics and Crop Plant Research, Germany) on-site, C000456 Assessing the impacts of genetic defects on starch metabolism in Arabidopsis plants using the carbon homeostasis model [Short Talk] Shuichi Kudo (Graduate School of Systems Life Sciences, Kyushu University, Japan) on-site, C000223
12:28 - 12:30	Closing remarks
Concurrent 24	Transposable elements, epigenetics, and environmental adaptation
Application#: C28 Day 3: Wed. Jun. 7	Organized by: Leandro Quadrana (Institut of Plant Science Paris-Saclay (IPS2)), Eriko Sasaki (Kyushu University) This concurrent session will cover multiple aspects of epigenetic regulation and its role in environmental adaptation: DNA methylation, chromatin modifications, transposon control, reproduction, transposon control, reproduction,
11:00 - 11:01	transgenerational epigenetics, and population epigenomics. Opening remarks
11:01 - 11:13	The genetic basis of non-CG transposon methylation variation in Arabidopsis thaliana Eriko Sasaki (Kyushu University, Japan) on-site, C000321
11:14 - 11:26	Transposable element sequences and their epigenetic control in plants: engines of rapid adaptation? Pierre Baduel (CNRS / ENS - PSL, France) on-site, C000496
11:27 - 11:39	Novel mechanism of transposon repression by histone deacetylases Hidetaka Ito (Hokkaido University, Japan) on-site, C000189
11:40 - 11:52	Targeted integrations of retrotransposons into centromeric regions in Arabidopsis Sayuri Tsukahara (The University of Tokyo, Japan) on-site, C000498
11:53 - 12:05	Targeted Transposition in Arabidopsis Richard Keith Slotkin (Danforth Plant Science Center & University of Missouri, USA) on-site, C000026
12:06 - 12:18	Unique aspects of transposable element silencing in duckweeds (lemnaceae) Arturo Mari-Ordonez (Gregor Mendel Institute (GMI), Austria) on-site, C000801
12:19 - 12:24	RNA deadenylation pathway suppresses transposable elements in Arabidopsis [Short Talk] Ling Wang (CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, China) on-site, C000092
12:25 - 12:30	Gene-transposon transcripts can be epigenetically regulated and impact gene response to stress conditions in Arabidopsis thaliana [Short Talk] Jeremy Berthelier (Okinawa Institute of Science and Technology, Japan) on-site, C000474

Plenary 03	Sustainable society and plants
14:30 - 15:00	Plant environmental memory: adaptive plasticity in the context of climate change Gabriela Auge (Consejo Nacional de Investigaciones Científicas y Tecnologicas (CONICET), South America) on-site, I000012
	Chaired by Minako Ueda (Tohoku University)
15:00 - 15:30	Investigating the role of Wall-associated kinases (WAKs) during secondary wall development Kim Johnson (La Trobe University, Australia) on-site, 1000006
	Chaired by Taku Demura (Nara Institute of Science and Technolgy)
15:30 - 16:00	The parasitic plant (Striga) and sorghum arms race Steven Maina Runo (Kenyatta University, Kenya) on-site, 1000019 Chaired by Miyo Terao-Morita (National Institute for Basic Biology)
Plenary 04	Functional metabolomics

16:30 - 17:00	How do Plants Evolve Specialized Metabolites and Pathways?
	Asaph Aharoni (Weizmann Institute of Science, Israel) on-site, 1000026
	Chaired by Mami Yamazaki (Chiba University
17:00 - 17:30	Dissecting gene-metabolite relationships in the legume terpenome
	Sibongile Mafu (University of Massachusetts Amherst, USA) on-site, I000018
	Chaired by Miyako Kusano (University of Tsukuba
17:30 - 18:00	Exploring plant metabolite functions beyond the conventional view
	Masami Yokota Hirai (RIKEN Center for Sustainable Resource Science, Japan) on-site, 1000021
	Chaired by Yuki Nakamura (RIKEN CSRS

Poster discussion (Even number)

18:00 - 20:00

Day 4 (Thu. Jun. 8)

	Single cell technologies and its diversity of applications
Application#: W10	Organized by: Ao Liu (HHMI-Stanford University), Bruno Guillotin (NYU-Center of Genomics and Systems Biology)
Day 4: Thu. Jun. 8	The fast development of single cell technology is revolutionizing the field of omics study. In the past few years, plant biologists have successfully adopted single cell technology and generated multiple plant cell atlases. These datasets allow us to capture the transcriptomic diversity in different cell types and help us understand cellular heterogeneity, as well as the basis of cell identity and cell fate transitions. For this session, we would like to focus on the most recent advances in the application of single cell technologies
9:00 - 9:02 9:02 - 9:15	Opening remarks Origin and diversification of the cell types of the flower Luke Nikolov (Indiana University, USA) on-site, C000809
9:16 - 9:29 9:30 - 9:43	Constructing an Arabidopsis Embryonic Expression Atlas using snRNA-seq Ping Kao (Graduate School of Life Sciences, Tohoku University, Japan, Japan) on-site, C000322 Cell Cycle Dynamics During Plant Cell Reprogramming
9:44 - 9:57	Laura Lee (New York University, USA) on-site, C000509 Time-resolved single-cell and spatial gene regulatory atlas of plants under pathogen attack Tatsuya Nobori (Salk Institute, USA) on-site, C000125
9:57 - 10:00	Closing remarks
Workshop 07	Watching and quantifying biochemical processes in intact plants
Application#: W03	Organized by: Cheng-Hsun Ho (ABRC, Academia Sinica)
Day 4: Thu. Jun. 8	The understanding of signaling and metabolic processes in multicellular organisms requires knowledge of the spatial dynamics of small molecules and the activities of enzymes, transporters and other proteins in vivo, as well as biophysical parameters inside cells and across tissues. Genetically encoded sensors are engineered fluorescent proteins that have been developed for a wide range of small molecules, such as ions and metabolites, or to report biophysical processes, such as transmembrane voltage or tension.
9:00 - 9:02 9:02 - 9:17	Opening remarks Live show of nitrate dynamics in root nd developemt of Arabidopsis Ho Cheng-Hsun (Academia Sinica, Taiwan) on-site, C000122
9:18 - 9:38	Towards Soil-on-a-Chip — structured micro-environments for root science Guido Grossmann (Heinrich-Heine-University Duesseldorf, Germany) on-site, C000824 CO2 Sensing and Signaling Components are Required for Stomatal Responses to Elevated
9:39 - 9:59 9:59 - 10:00	Temperatures Nattiwong Pankasem (University of California San Diego, USA) on-site, C000359 Closing remarks
0100 10100	
Workshop 08	Spatiotemporal dynamics of protein and protein complexes in the cell
Workshop 08 Application#: W06	Organized by: Hisashi Koiwa (Texas A&M University), Libo Shan (Texas A&M University), Juan Dong
•	Organized by: Hisashi Koiwa (Texas A&M University), Libo Shan (Texas A&M University), Juan Dong (Rutgers University) Recent advances in biochemistry and biophysics, plant molecular and cell biology revealed that the differential fate of proteins in cell space including transport, modification, and even aggregation leads to contrasting cellular output in abiotic and biotic defense responses and plant development. Hence, the need for the detection and visualization of protein complex dynamics in living cells has become the technology of utmost importance. This workshop aims to showcase cutting-edge technologies and
Application#: W06	Organized by: Hisashi Koiwa (Texas A&M University), Libo Shan (Texas A&M University), Juan Dong (Rutgers University) Recent advances in biochemistry and biophysics, plant molecular and cell biology revealed that the differential fate of proteins in cell space including transport, modification, and even aggregation leads to contrasting cellular output in abiotic and biotic defense responses and plant development. Hence, the need for the detection and visualization of protein complex dynamics in living cells has become the technology of utmost importance. This workshop aims to showcase cutting-edge technologies and findings in spatiotemporal dynamics of cellular proteins and protein complexes. Opening remarks
Application#: W06 Day 4: Thu. Jun. 8	Organized by: Hisashi Koiwa (Texas A&M University), Libo Shan (Texas A&M University), Juan Dong (Rutgers University) Recent advances in biochemistry and biophysics, plant molecular and cell biology revealed that the differential fate of proteins in cell space including transport, modification, and even aggregation leads to contrasting cellular output in abiotic and biotic defense responses and plant development. Hence, the need for the detection and visualization of protein complex dynamics in living cells has become the technology of utmost importance. This workshop aims to showcase cutting-edge technologies and findings in spatiotemporal dynamics of cellular proteins and protein complexes. Opening remarks Tandem fluorescent timer in Plants: A Tool for Acquiring Spatiotemporal Information about Proteins
Application#: W06 Day 4: Thu. Jun. 8 9:00 - 9:02	Organized by: Hisashi Koiwa (Texas A&M University), Libo Shan (Texas A&M University), Juan Dong (Rutgers University) Recent advances in biochemistry and biophysics, plant molecular and cell biology revealed that the differential fate of proteins in cell space including transport, modification, and even aggregation leads to contrasting cellular output in abiotic and biotic defense responses and plant development. Hence, the need for the detection and visualization of protein complex dynamics in living cells has become the technology of utmost importance. This workshop aims to showcase cutting-edge technologies and findings in spatiotemporal dynamics of cellular proteins and protein complexes. Opening remarks Tandem fluorescent timer in Plants: A Tool for Acquiring Spatiotemporal Information about Proteins Yukihiro Nagashima (Texas A&M University, USA) on-site, C000535 Ironing out the issues: protein dynamics in response to iron deficiency
Application#: W06 Day 4: Thu. Jun. 8 9:00 - 9:02 9:02 - 9:15	Organized by: Hisashi Koiwa (Texas A&M University), Libo Shan (Texas A&M University), Juan Dong (Rutgers University) Recent advances in biochemistry and biophysics, plant molecular and cell biology revealed that the differential fate of proteins in cell space including transport, modification, and even aggregation leads to contrasting cellular output in abiotic and biotic defense responses and plant development. Hence, the need for the detection and visualization of protein complex dynamics in living cells has become the technology of utmost importance. This workshop aims to showcase cutting-edge technologies and findings in spatiotemporal dynamics of cellular proteins and protein complexes. Opening remarks Tandem fluorescent timer in Plants: A Tool for Acquiring Spatiotemporal Information about Proteins Yukihiro Nagashima (Texas A&M University, USA) on-site, C000535 Ironing out the issues: protein dynamics in response to iron deficiency Terri Long (North Carolina State University, USA) on-site, C000749 Plant plasma membrane nano-organization and cell polarization
Application#: W06 Day 4: Thu. Jun. 8 9:00 - 9:02 9:02 - 9:15 9:16 - 9:29	Organized by: Hisashi Koiwa (Texas A&M University), Libo Shan (Texas A&M University), Juan Dong (Rutgers University) Recent advances in biochemistry and biophysics, plant molecular and cell biology revealed that the differential fate of proteins in cell space including transport, modification, and even aggregation leads to contrasting cellular output in abiotic and biotic defense responses and plant development. Hence, the need for the detection and visualization of protein complex dynamics in living cells has become the technology of utmost importance. This workshop aims to showcase cutting-edge technologies and findings in spatiotemporal dynamics of cellular proteins and protein complexes. Opening remarks Tandem fluorescent timer in Plants: A Tool for Acquiring Spatiotemporal Information about Proteins Yukihiro Nagashima (Texas A&M University, USA) on-site, C000535 Ironing out the issues: protein dynamics in response to iron deficiency Terri Long (North Carolina State University, USA) on-site, C000749

Workshop 09	Arabidopsis small RNA biology
Application#: W01	Organized by: Keith Slotkin (Donald Danforth Plant Science Center & University of Missouri)
Day 4: Thu. Jun. 8	This workshop will focus on newly discovered roles of small RNAs, highlighting two hot areas of research in the field: 1) The function of small RNAs that are generated only in very specific reproductive cells, and 2) The role of small RNA warfare during the Arabidopsis-pathogen/pest interaction.
9:00 - 9:01 9:01 - 9:12	Opening remarks Mating system influences the requirement for RdDM during reproduction in Brassicaceae Rebecca Mosher (University of Arizona, USA) on-site, C000533
9:13 - 9:24	Interspecies regulatory small RNAs in plant-parasite interactions Saima Shahid (Oklahoma State University, USA) on-site, C000608
9:25 - 9:36	Translation-dependent epigenetic silencing of transposon Jungnam Cho (Chinese Academy of Sciences, China) on-site, C000097
9:37 - 9:48	Reproductive barriers established by epigenetic mechanisms in the endosperm Claudia Köhler (Max Planck Institute of Molecular Plant Physiology, Germany) on-site, C000767
9:49 - 10:00	Regulating Pol-IV to generate epigenetic diversity Julie Law (Salk Institute for Biological Studies, USA) on-site, C000785
Workshop 10	Arabidopsis bioinformatics
Application#: W05	Organized by: Nicholas Provart (University of Toronto), Tanya Berardini (Phoenix Bioinformatics)
Day 4: Thu. Jun. 8	This workshop will feature updates and introductions of online resources that are part of the Arabidopsis scientist's modern research toolkit, just like laboratory equipment, enzymes, and buffers. Essential resources like TAIR and BAR will be revisited in addition to highlighting resources created and maintained by community members in the Asia Pacific region that are of global importance.
9:00 - 9:02	Welcome

Nicholas Provart (University of Toronto / BAR, Canada) on-site, C000795

rDNA variation, epigenetic regulation and large scale recombination Ramya Enganti (HHMI/Indiana University, USA) on-site, C000711

To integrate or not to integrate: how to collaborate with conversational AI programs Masanori Arita (RIKEN Center for Sustainable Resource Science, Japan) on-site, C000820 Complete sequence assembly of Arabidopsis ribosomal DNA (rDNA) arrays provides insight into

The 2023 TAIR update: From basics to the progress with the community-developed v12 of the

Tanya Berardini (The Arabidopsis Information Resource/Phoenix Bioinformatics, USA) on-site, C000791

Updates to the Bio-Analytic Resource

Discussion/Q&A/Questions for all speakers

9:02 -

9:15 -

9:28 -

9:41 -

9:14

9:27

9:40

9:53

9:53 - 10:00

genome

Concurrent 25	The road to recovery: Elucidating stress recovery pathways and reversing stress effects
Application#: C21 Day 4: Thu. Jun. 8 10:30 - 10:35 10:35 - 10:55	 Organized by: Natanella Illouz-Eliaz (Salk Intitute), Travis Lee (Salk Institute) Plants manifest a plethora of responses from the molecular to the phenotypic level when exposed to different environments. For example, plants under water deprivation often develop smaller and darker leaves than their well-watered counterparts. Extensive empirical work has shown that gene expression is a key determinant of the physiological and developmental responses of plants to environmental cues. Further, the return to homeostasis following environmental challenges can be associated with processes distinct from the stressor proper, yet are of equal importance for plant survival. In this session, we will focus on the frontier between stress tolerance and recovery to understand mechanisms affecting reproductivity and yield after encountering stress. Although some studies consider stress recovery, it is mostly presented as a control that stressful conditions have relieved. In order to reshape a plant's ability to cope with stress and recovery responses and to enhance plant performance under fluctuating environments there is a need to gain a greater understanding of the margin between the stress, differences in response to various stress severities, and stress recovery as a process that can be studied and improved. Opening remarks Conflicts in phenotypic natural selection constrain adaptation to climate change in Arabidopsis thaliana Moi Exposito-Alonso (Carnegie Institution for Science, Stanford University, USA) on-site, C000550
10:56 - 11:16	Molecular and evolutionary basis of selective autophagy-mediated heat stress recovery in plants
11:17 - 11:37 11:38 - 11:48 11:49 - 11:59	Yasin Dagdas (Gregor Mendel Institute, Austria) on-site, C000136 Leveraging ecological specialization to understand plant drought tolerance strategies and their genetic modulation: a focus on ecological divergent Arabidopsis species Juliette de Meaux (University of Cologne, Germany) online, C000839 Transcription factor and chromatin-based heat memory in plants [Short Talk] Nobutoshi Yamaguchi (Nara Institute of Science and Technology, Japan) on-site, C000226 Response of Arabidopsis thaliana to flooding with physical flow [Short Talk] Nobuhiro Suzuki (Sophia University, Japan) on-site, C000596
Concurrent 26	Receptor kinase signaling in development
Application#: C12 Day 4: Thu. Jun. 8	Organized by: Christian Hardtke (University of Lausanne), Jamie Van Norman (UC Riverside) In recent years, receptor kinase pathways have gained prominence in developmental processes. This session features the latest developments in their characterization in phenomena as diverse as polarity, cell division orientation or regeneration.
10:30 - 10:31 10:31 - 10:50	Opening remarks Which side are you on? Linking polarized receptor kinases to root cell division control Jaimie Van Norman (University of California, Riverside, USA) on-site, C000572
10:51 - 11:10	Beyond stem cells: Novel roles for CLE peptide signaling in shoot apical meristems and the environmental control of plant growth. Zachary Nimchuk (University of North Carolina at Chapel Hill, USA) on-site, C000354
11:11 - 11:30	CLE-BAM/CIK signaling in root vascular patterning Pingping Qian (Osaka University, Japan) on-site, C000424
11:31 - 11:40	Coordinating root system architecture: the intersection of CEP and Cytokinin hormone pathways in Arabidopsis [Short Talk] Michael Taleski (Australian National University, Australia) on-site, C000696
11:41 - 11:50	Stomata-derived intercellular signaling that directs mesophyll air space formation [Short Talk] Yuki Yoshida (Kumamoto University, Japan) on-site, C000712
11:51 - 12:00	A phosphoinositide hub connects CLE peptide signaling and polar auxin efflux regulation [Short Talk] Qian Wang (DBMV, University of Lausanne, Switzerland) on-site, C000096

Concurrent 27	Chemical priming as a sustainable tool for improved productivity under stress conditions
Application#: C30	Organized by: Vassilis Fotopoulos (The Cyprus University of Technology), Khurram Bashir (Lahore University of Management Sciences)
Day 4: Thu. Jun. 8	Chemical biology could contribute towards crop improvement while improving farmers' income and ultimately contributing towards good health and sustainable agricultural practices. This could also help achieve sustainable development goals (SDGs) such as SDG1: No Poverty (Through improving farmers' income) SDG2: Zero hunger (Through enhanced crop production) SDG3: Good Health and Well-being (Through improved nutritional quality) The session would provide an opportunity to share the latest trends in the chemical biology of plants.
10:30 - 10:31 10:31 - 10:46	Opening remarks Signalling and epigenetic maintenance of plant immune memory by chemical priming agents. Jurriaan Ton (University of Sheffield, United Kingdom) on-site, C000829
10:47 - 11:02	Employment of functionalized nanoparticles and polymers towards climate-smart crops Vasileios Fotopoulos (Cyprus University of Technology, Cyprus) on-site, C000827
11:03 - 11:18	Ethanol-mediated chemical priming to mitigate drought stress in plants Khurram Bashir (Lahore University of Management Sciences, Pakistan) on-site, C000160
11:19 - 11:30	Screening chemicals regulating ion channels and modulating plant growth mechanism Nobuyuki Uozumi (Tohoku University, Japan) on-site, C000153
11:31 - 11:42	VDAL, a new protein biostimulant from Verticillium dahliae and its applications in Agriculture Zhizhong Gong (China Agricultural University, China) on-site, C000784
11:43 - 11:51	Chemical biology study of jasmonate signaling by development of a biased agonist derived from stereoisomers of coronatine [Short Talk]
11:52 - 12:00	Kengo Hayashi (Tohoku University, Japan) on-site, C000261 Identification of new targets for improving abiotic stress tolerance in plants [Short Talk] María del Rosario González Bermúdez (Student, Spain) on-site, C000218
Concurrent 28	Cross-kingdom RNA communications and innovative Eco-friendly disease control solutions
Application#: C02 Day 4: Thu. Jun. 8	Organized by: Hailing Jin (University of California, Riverside) Cross-kingdom RNA communications between plants and interaction organisms is a newly emerging field. Understanding the molecular mechanisms and regulatory pathways underlying the RNA communications will help us design RNA-based new generation of plant protection solutions that are more effective and environmentally friendly.
10:30 - 10:32 10:32 - 10:52	Opening remarks Cross-kingdom RNA trafficking between plants and fungal pathogens Hailing Jin (University of California, Riverside, USA) on-site, C000826
10:53 - 11:13	Expanding the Universe of Sprayable RNAs – Current Challenges and Prospects for the Future Aline Koch (University of Regensburg, Gemany) on-site, C000864
11:14 - 11:34	TBA (Lionel Navarro) (TBA, TBA) , TBA
11:35 - 11:45	Proof of concept: circular antisense RNAs (caRNAs) as a new mode of action for RNA-based plant protection [Short Talk] Timo Schlemmer (University of Regensburg, Germany) on-site, C000757
11:46 - 11:56	The role of plant extracellular vesicles in mRNA intercellular trafficking [Short Talk] Huan-Chi Tien (Institute of Plant and Microbial biology, Academia Sinica, Taiwan) on-site, C000211
11:56 - 12:00	Closing remarks

Concurrent 29	Visualizing the dynamics of the circadian clock
Application#: C27 Day 4: Thu. Jun. 8	Organized by: Chin-Mei Lee (National Taiwan University), Huang-Lung Tsai (National Taiwan University) Plant circadian clocks continuously adjust their rhythm in accordance with the ever-changing environments at different temporal and spatial levels. The advance in techniques and imaging systems along with the development of algorithms allow us to visualize the circadian clock interacting with environments at a whole plant to single-cell levels.
10:30 - 10:31	Opening remarks
10:31 - 10:46	Investigating the dynamic regulation of stress-responsive genes in plants. Dawn Nagel (University of California, Riverside, USA) on-site, C000806
10:47 - 11:02	Variation in internal timekeeping alters abiotic stress response Kathleen Greenham (University of Minnesota, USA) on-site, C000743
11:03 - 11:18	Characterization of the long-distance circadian communication through micro-grafting techniques
11:19 - 11:31	Nozomu Takahashi (Nara Institute of Science and Technology, Japan) on-site, C000683 Microfocus X-ray CT Analysis of Arabidopsis Petioles for Leaf Movement [Short Talk] Maika Hayashi (Nara institute of science and technology, Japan) on-site, C000577
11:32 - 11:44	Identification of LWD1-interacting proteins reveals novel regulators for Arabidopsis circadian clock [Short Talk] Chun-Kai Huang (Institute of Plant and Microbial Biology, Academia Sinica, Taiwan, ROC, Taiwan) on- site, C000200
11:45 - 11:51	Long-distance circadian coordination via a phloem-delivered mobile transcript [Short Talk] András Székely (Max Planck Institute of Molecular Plant Physiology, Germany) on-site, C000473
11:51 - 11:52	Closing remarks
Workshop 11	Diversity and inclusion for excellence in science
Application#: W11	Organized by: Joanna Friesner (North American Arabidopsis Steering Committee, USA), Yoselin Benitez- Alfonso (Leeds University), Kanako Bessho-Uehara (Tohoku University)
Day 4: Thu. Jun. 8	Research and training using Arabidopsis has been vital to the success of plant science due, in large part, to sustained global collaborations in the plant science community. While recent studies indicate clear benefits of diversity and inclusion, progress in these areas is slow and has been driven by a few countries. This moderated workshop will feature a panel of plant biology faculty that will provide diverse perspectives on the challenges of working within academia, and the benefits of creating and sustaining a diverse community to achieve excellence.
12:45 -	Moderator: Keiko Torii (HHMI/UT Austin/Nagoya University, USA/Japan)
	Panelists: Gabriela Auge (CONICET, University of Buenos Aires, Argentina) Yoselin Benitez-Alfonso (Leeds University, United Kingdom) Kanako Bessho-Uehara (Tohoku University, Japan) Jose Dinneny (Stanford University, USA) Terri Long (NCSU, USA) Keith Slotkin (DDPSC & University of Missouri, USA) Hironaka Tsukagoshi (Meijo University, Japan)

Concurrent 30	Living on the edge: Adaptation of Arabidopsis extremophyte relatives to harsh environments
Application#: C10	Organized by: Maheshi Dassanayake (Louisiana State University), Simon Barak (Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev)
Day 4: Thu. Jun. 8	Extremophytes, plants that inhabit harsh environments, represent novel genetic resources underexplored for their adaptations to multiple environmental stresses. Specifically, extremophytes that are closely related to Arabidopsis are ideal models for comparative multi-level analyses. This session will focus on systems biology research of Arabidopsis extremophyte relatives from physiological through molecular, "omics", evolutionary, and ecological studies to elucidate mechanisms allowing these intriguing plants to survive the most extreme environments on the planet.
14:00 - 14:01 14:01 - 14:15	Opening remarks A counterintuitive conundrum: Salt inhibition of halophytic seed germination Simon Barak (Ben-Gurion University of the Negev, Israel) online, C000828
14:16 - 14:30	Role and Functional Differences of HIGH-AFFINITY K+ TRANSPORTER1 (HKT1)-Type Transporters in Plants under Salt Stress Dae-Jin Yun (Konkuk University, Republic of Korea) on-site, C000163
14:31 - 14:45	Exploring plant adaptations to aquatic environments: A study of Rorippa aquatica, an amphibious plant living at the edge of the water Seisuke Kimura (Kyoto Sangyo University, Japan) on-site, C000324
14:46 - 15:00	Discovering how evolutionary innovations in growth regulation contribute to plant stress tolerance
15:01 - 15:10	Prashanth Ramachandran (Stanford University, USA) on-site, C000594 Enhanced Salt Tolerance by an Antarctic moss gene [Short Talk] NoA Bae (Sogang university, Republic of Korea) on-site, C000579
15:11 - 15:20	Altitudinal genetic differentiation in the leaf wax-mediated flowering bud protection against frost in an early-spring flowering herb, Arabidopsis halleri [Short Talk] Hiroshi Kudoh (Center for Ecological Research, Kyoto University, Japan) on-site, C000599
15:21 - 15:30	Seasonal dynamics of epigenome in a natural population of Arabidopsis halleri [Short Talk] Haruki Nishio (Shiga University, Japan) on-site, C000529
Concurrent 31	Short and long range signaling by RNA
Application#: C26 Day 4: Thu. Jun. 8	Organized by: Dave Jackson (Cold Spring Harbor Laboratory), Margaret Frank (Cornell University), Fritz Kragler (Max Planck Institute of Molecular Plant Physiology), Michitaka Notaguchi (Nagoya University) Plant development, physiology and defense are controlled by several classes of mobile RNAs that move both cell-to-cell, through plasmodesmata, and into the phloem for systemic movement. Mobile mRNAs control meristem, leaf and tuber development, among other processes. Small RNA silencing signals and miRNAs also move systemically through plasmodesmata and the phloem, for example, to control nutrient homeostasis. The workshop will present new findings in this exciting emerging area of plant biology research.
14:00 - 14:02	Opening remarks
14:02 - 14:16	Deciphering signals from the noise in the mRNA mobileome using comparative Solanaceae genomics Margaret Frank (Cornell University, USA) on-site, C000794
14:17 - 14:31	An RNA exosome subunit promotes cell-to-cell trafficking of a homeobox mRNA via plasmodesmata Munenori Kitagawa (College of Horticulture & Forestry Sciences, Huazhong Agricultural University, China) on-site, C000051
14:32 - 14:46	Investigation of mRNAs that move long-distance Michitaka Notaguchi (Nagoya University, Japan) on-site, C000398
14:47 - 15:01	Lost in translation? The long-distance travel of messenger RNAs Friedrich Kragler (Max-Planck-Institute of Molecular Plant Physiology, Germany) on-site, C000139
15:02 - 15:10	Investigating the role of the Arabidopsis ROTAMASE CYCLOPHILIN gene family in organelle- mediated mobile mRNAs transport [Short Talk] Yu-Hsien Chang (Institute of Plant and Microbial Biology, Academia Sinica, Taiwan) on-site, C000167
15:11 - 15:19	A cell wall-modifying enzyme controls symplastic movement of RNA silencing in aerial Arabidopsis tissues [Short Talk] Florence Brioudes (ETH Zürich, Switzerland) on-site, C000315
15:20 - 15:28	Dose-dependent long-distance movement of microRNA399 duplex regulates phosphate homeostasis in Arabidopsis [Short Talk] Chih-Pin Chiang (Agricultural Biotechnology Research Center, Academia Sinica, Taiwan) on-site, C000656

Concurrent 32	Mechanisms and functions of endocytosis in plants
Application#: C18 Day 4: Thu. Jun. 8	Organized by: Jenny Russinova (VIB-UGent Center for Plant Systems Biology), Takashi Ueda (NIBB) Plant endocytosis underlies a plethora of biological processes including nutrient uptake, signal transduction, development, polarity and tropic growth, immunity and responses to abiotic stress. However, the molecular machinery of endocytosis, its regulation and exact biological impacts are only beginning to be understood in plants. This session will cover the following topics (1) Molecular mechanisms of endocytosis in plants; (2) Endocytosis and plant polarity, development and nutrient uptake; (3) Endocytosis and plant-pathogen interactions; (4) Endocytosis and cell wall biogenesis; (5) Crosstalk between endocytosis, exocytosis and autophagy
14:00 - 14:02 14:02 - 14:20	Opening remarks Mechanistic insight into plant endocytosis Daniel Van Damme (Ghent University Department of Plant Biotechnology and Bioinformatics and VIB Center for Plant Systems Biology, Belgium) on-site, C000637
14:21 - 14:30	Mechanisms underlying polar membrane targeting of SOSEKI protein [Short Talk] Andriy Volkov (Laboratory of Biochemistry, Wageningen University, Netherlands) on-site, C000541 A novel reciprocal regulation mechanism for SH3P2 in crosstalk between endocytosis and
14:31 - 14:49	autophagy Xiaohong Zhuang (The Chinese University of Hong Kong, Hong Kong) on-site, C000034
14:50 - 14:59	Brassinosteroid receptor BRI1 deubiquitination by UBP12/UBP13 fine-tunes plant growth [Short Talk] Yongming Luo (VIB-UGent Center for Plant Systems Biology, Belgium) on-site, C000098
15:00 - 15:18	Understanding the Evolution of Endosomal Sorting Mechanisms in Plants Marisa Otegui (University of Wisconsin-Madison, USA) on-site, C000032
15:19 - 15:28	Ca2+-induced removal of inner vegetative plasma membrane in Arabidopsis sperm cells [Short Talk]
15:28 - 15:30	Naoya Sugi (Yokohama City University, Japan) on-site, C000382 Closing remarks
Concurrent 33	Front-line of plant genome engineering
Concurrent 33 Application#: C31 Day 4: Thu. Jun. 8	Organized by: Daisuke Miki (Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences), Masaki Endo (National Agriculture and Food Research Organization (NARO)), Yuriko Osakabe (School of Life Science and Technology, Tokyo Institute of Technology) Genome engineering are revolutionizing life sciences and plant biotechnology that seek to develop new technologies for the precise manipulation of genes and genomes in vivo. In addition to its use for advancing our understanding of basic biology, genome engineering has numerous applications for improving agronomically traits. In this session, we will present and discuss recent advances in nuclear
Application#: C31 Day 4: Thu. Jun. 8 14:00 - 14:01	Organized by: Daisuke Miki (Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences), Masaki Endo (National Agriculture and Food Research Organization (NARO)), Yuriko Osakabe (School of Life Science and Technology, Tokyo Institute of Technology) Genome engineering are revolutionizing life sciences and plant biotechnology that seek to develop new technologies for the precise manipulation of genes and genomes in vivo. In addition to its use for advancing our understanding of basic biology, genome engineering has numerous applications for improving agronomically traits. In this session, we will present and discuss recent advances in nuclear and organelle genome engineering approaches, novel tools and delivery system. Opening remarks
Application#: C31 Day 4: Thu. Jun. 8 14:00 - 14:01 14:01 - 14:18	 Organized by: Daisuke Miki (Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences), Masaki Endo (National Agriculture and Food Research Organization (NARO)), Yuriko Osakabe (School of Life Science and Technology, Tokyo Institute of Technology) Genome engineering are revolutionizing life sciences and plant biotechnology that seek to develop new technologies for the precise manipulation of genes and genomes in vivo. In addition to its use for advancing our understanding of basic biology, genome engineering has numerous applications for improving agronomically traits. In this session, we will present and discuss recent advances in nuclear and organelle genome engineering approaches, novel tools and delivery system. Opening remarks Genome engineering for plastid and mitochondria Shin-ichi Arimura (University of Tokyo, Japan) on-site, C000254
Application#: C31 Day 4: Thu. Jun. 8 14:00 - 14:01	 Organized by: Daisuke Miki (Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences), Masaki Endo (National Agriculture and Food Research Organization (NARO)), Yuriko Osakabe (School of Life Science and Technology, Tokyo Institute of Technology) Genome engineering are revolutionizing life sciences and plant biotechnology that seek to develop new technologies for the precise manipulation of genes and genomes in vivo. In addition to its use for advancing our understanding of basic biology, genome engineering has numerous applications for improving agronomically traits. In this session, we will present and discuss recent advances in nuclear and organelle genome engineering approaches, novel tools and delivery system. Opening remarks Genome engineering for plastid and mitochondria Shin-ichi Arimura (University of Tokyo, Japan) on-site, C000254 Towards versatile plant gene editing systems: the wisker-based direct delivery method and small-size Cas protein Shigeo Sugano (National Institute of Advanced Industrial Science and Technology (AIST), Japan) on-site,
Application#: C31 Day 4: Thu. Jun. 8 14:00 - 14:01 14:01 - 14:18	 Organized by: Daisuke Miki (Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences), Masaki Endo (National Agriculture and Food Research Organization (NARO)), Yuriko Osakabe (School of Life Science and Technology, Tokyo Institute of Technology) Genome engineering are revolutionizing life sciences and plant biotechnology that seek to develop new technologies for the precise manipulation of genes and genomes in vivo. In addition to its use for advancing our understanding of basic biology, genome engineering has numerous applications for improving agronomically traits. In this session, we will present and discuss recent advances in nuclear and organelle genome engineering approaches, novel tools and delivery system. Opening remarks Genome engineering for plastid and mitochondria Shin-ichi Arimura (University of Tokyo, Japan) on-site, C000254 Towards versatile plant gene editing systems: the wisker-based direct delivery method and small-size Cas protein Shigeo Sugano (National Institute of Advanced Industrial Science and Technology (AIST), Japan) on-site, C000660 CRISPR/Cas-meditated Chromosome and Tissue Engineering in Arabidopsis
Application#: C31 Day 4: Thu. Jun. 8 14:00 - 14:01 14:01 - 14:18 14:19 - 14:36	 Organized by: Daisuke Miki (Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences), Masaki Endo (National Agriculture and Food Research Organization (NARO)), Yuriko Osakabe (School of Life Science and Technology, Tokyo Institute of Technology) <i>Genome engineering are revolutionizing life sciences and plant biotechnology that seek to develop new technologies for the precise manipulation of genes and genomes in vivo. In addition to its use for advancing our understanding of basic biology, genome engineering has numerous applications for improving agronomically traits. In this session, we will present and discuss recent advances in nuclear and organelle genome engineering approaches, novel tools and delivery system.</i> Opening remarks Genome engineering for plastid and mitochondria Shin-ichi Arimura (University of Tokyo, Japan) on-site, C000254 Towards versatile plant gene editing systems: the wisker-based direct delivery method and small-size Cas protein Shigeo Sugano (National Institute of Advanced Industrial Science and Technology (AIST), Japan) on-site, C000660 CRISPR/Cas-meditated Chromosome and Tissue Engineering in Arabidopsis Holger Puchta (Karlsruhe Institute of Technology, Germany) online, C000075 Gene editing in Arabidopsis using RNA viruses Daniel Voytas (University of Minnesota, USA) online, C000369
Application#: C31 Day 4: Thu. Jun. 8 14:00 - 14:01 14:01 - 14:18 14:19 - 14:36 14:37 - 14:54	 Organized by: Daisuke Miki (Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences), Masaki Endo (National Agriculture and Food Research Organization (NARO)), Yuriko Osakabe (School of Life Science and Technology, Tokyo Institute of Technology) <i>Genome engineering are revolutionizing life sciences and plant biotechnology that seek to develop new technologies for the precise manipulation of genes and genomes in vivo. In addition to its use for advancing our understanding of basic biology, genome engineering has numerous applications for improving agronomically traits. In this session, we will present and discuss recent advances in nuclear and organelle genome engineering approaches, novel tools and delivery system.</i> Opening remarks Genome engineering for plastid and mitochondria Shin-ichi Arimura (University of Tokyo, Japan) on-site, C000254 Towards versatile plant gene editing systems: the wisker-based direct delivery method and small-size Cas protein Shigeo Sugano (National Institute of Advanced Industrial Science and Technology (AIST), Japan) on-site, C000660 CRISPR/Cas-meditated Chromosome and Tissue Engineering in Arabidopsis Holger Puchta (Karlsruhe Institute of Technology, Germany) online, C000075 Gene editing in Arabidopsis using RNA viruses
Application#: C31 Day 4: Thu. Jun. 8 14:00 - 14:01 14:01 - 14:18 14:19 - 14:36 14:37 - 14:54 14:55 - 15:12	Organized by: Daisuke Miki (Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences), Masaki Endo (National Agriculture and Food Research Organization (NARO)), Yuriko Osakabe (School of Life Science and Technology, Tokyo Institute of Technology) Genome engineering are revolutionizing life sciences and plant biotechnology that seek to develop new technologies for the precise manipulation of genes and genomes in vivo. In addition to its use for advancing our understanding of basic biology, genome engineering has numerous applications for improving agronomically traits. In this session, we will present and discuss recent advances in nuclear and organelle genome engineering approaches, novel tools and delivery system. Opening remarks Genome engineering for plastid and mitochondria Shin-ichi Arimura (University of Tokyo, Japan) on-site, C000254 Towards versatile plant gene editing systems: the wisker-based direct delivery method and small- size Cas protein Shigeo Sugano (National Institute of Advanced Industrial Science and Technology (AIST), Japan) on-site, C000660 CRISPR/Cas-meditated Chromosome and Tissue Engineering in Arabidopsis Holger Puchta (Karlsruhe Institute of Technology, Germany) online, C00075 Gene editing in Arabidopsis using RNA viruses Daniel Voytas (University of Minnesota, USA) online, C000369 Insights into tRNA-like structures (TLS) as motifs facilitating long-distance transport of mRNAs [Short Talk]

Workshop 12	MASC: Arabidopsis for SDGs/4th Decadal Vision
Application#: W14	Organized by: Nicholas Provart (University of Toronto), Masatomo Kobayashi (RIKEN BRC)
Day 4: Thu. Jun. 8	The theme of this year's ICAR is Arabidopsis for Sustainable Development Goals. Participants will discuss how research in Arabidopsis can be leveraged to help achieve some of the United Nation's 17 SDGs, especially in the area of zero hunger, climate action, and life on land. In addition, participants will discuss how Arabidopsis research can help address important plant science questions (such as those posed in Armstrong et al., 2023; doi. 10.1111/nph.18771) and the kinds of international projects that might be considered as part of a 4th decadal vision for Arabidopsis research, following on from successful collaborations that have arisen from 3 decades of coordinated efforts.
14:00 -	Panelists: Cris Argueso (Colorado State Univ., NAASC, USA) Gabriela Auge (CONICET, Univ. of Buenos Aires, Argentina) Sureshkumar Balasubramanian (Monash Univ, Australia) Dirk Inze (VIB, Belgium) Kazuki Saito (RIKEN CSRS, Japan)
Plenary 05	Evolution and ecology
16:00 - 16:30	Adaptation in natural populations of outcrossing Arabidopsis species Filip Kolář (Charles University, Czech Republic) on-site, 1000025 Chaired by Takashi Tsuchimatsu (University of Tokyo)
16:30 - 17:00	The Mendelian and polygenic bases of weedy Arabidopsis thaliana evolution Cheng-Ruei Lee (National Taiwan University, Taiwan) on-site, 1000015
	Chaired by Eriko Sasaki (Kyushu University)
17:00 - 17:30	All bullseyes great and small: Eco-Evo-Devo of petal patterning in Hibiscus Edwige Moyroud (University of Cambridge, UK) on-site, 1000017
	Chaired by Vincent Castric (CNRS - University of Lille)
Banquet	
18.00 - 22.30	

18:00 - 22:30

Day 5 (Fri. Jun. 9)

Plenary 06		Integration of environmental cues
9:00 -	9:30	"To GROW or not to GROW": molecular mechanism of cell elongation at low temperature in single plant cells. José M. Estevez (CBV-UNAB/Fundación Instituto Leloir-IIBBA, Chile/Argentina) on-site, 1000009 Chaired by Jian-Kang Zhu (Southern University of Science and Technology)
9:30 -	10:00	Integrating osmotic potential with Jasmonate-mediated plant acclimation Debora Gasperini (Leibniz Institute of Plant Biochemistry (IPB), Germany/Croatia) on-site, 1000020 Chaired by Shu-Hsing Wu (Academia Sinica)
10:00 -	10:30	Peptide signal-mediated adaptation to spatially and temporally fluctuating environments in plants Yoshikatsu Matsubayashi (Nagoya university, Japan) on-site, 1000024
		Chaired by Tomonao Matsushita (Kyoto University)
Keynote 03		
11:00 -	11:45	Deconstructing Plant Processes: Cell by Cell Joseph Ecker (Salk Institute for Biological Studies, USA) on-site, 1000022 Chaired by Tetsuya Higashiyama (University of Tokyo)
Closing and	Introd	uction of ICAR2024

11:45 - 12:00

Representatives of the Organizing Committees of ICAR2023 and ICAR2024

Poster presentations

01 Abio	tic response (salt/dehydration/water)
	Overexpression of soybean Class II acyl-CoA-binding proteins unveils an oxylipin signaling
PO-001	mechanism in salt-stressed Arabidopsis Terry Shiu-Cheung Lung (School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China)
PO-002 CC30	Enhanced Salt Tolerance by an Antarctic moss gene NoA Bae (Sogang university, Korea)
PO-003	Chenopodium quinoa as a model plant to study salt stress Lucia Acosta-Gamboa (Donald Danforth Plant Science Center)
PO-004	Investigation of heterosis in the salinity tolerance of intraspecific hybrid in Arabidopsis thaliana Yoshiki Kamiya (Kobe University, Japan) Overexpression of eelgrass Rare Cold Inducible 2 (RCI2) encoding a small-membrane protein
PO-005	maintains chlorophyll content in Arabidopsis subjected to high salinity and dehydration Hajime Shiota (Yokohama City Univ., Japan)
PO-006	Arabidopsis APYs interact with PATL4 and co-regulate stress response in plants Jia-Hong Tang (National Taiwan University, Taiwan)
PO-007	Physiological and molecular alterations in Schrenkiella parvula under mild salt stress Keriman Şekerci (Tohoku University, Graduate School of Life Sciences)
PO-008 CC19	A Comparative Study of Adaptive Stress Tolerance in the Brassicaceae Family Andrea Ramirez Ramirez (Stanford University)
0010	A Ca2+ sensor switch for SOS1 Na+/H+ antiporter activation confers tolerance to elevated salt stress
PO-009	in Arabidopsis Joerg Kudla (Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Mü
PO-010	nster, 48149 Münster, Germany) Dissecting genetic mechanism of natural variation in salt tolerance among Arabidopsis thaliana Takuma Kajino (Dept. of Bioscience, Tokyo Univ. of Agriculture)
PO-011	Analyses of salt susceptibility of Arabidopsis inositol transporter (INT) loss-of-function mutants Li See Ng (National Chung Hsing University, Taiwan)
PO-012	Soybean acyl-CoA-binding proteins modulate the activity of their protein interactor lipoxygenase in transgenic Arabidopsis during salinity stress Mee-Len Chye (University of Hong Kong)
PO-013	Identification of proteins interacting with CBL4 using a proximity biotinylation enzyme, AirID Akira Nozawa (Ehime University) Phosphorylation of Arabidopsis Glycine-Rich RNA-Binding Protein 8 by ABA-non-activated SnRK2s
PO-014	triggers its localization to the stress granules upon salinity stress by promoting its liquid-liquid phase separation Adrian Mateusz Kasztelan (Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Poland)
PO-015	Defects in Arabidopsis N-Acetylglucosamine-1-P Uridylyltransferase Expression Impairs Protein N- glycosylation and Induces ABA-Mediated Salt Sensitivity Ya-Huei Chen (Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan)
PO-016	HAT22/ABIG1 represses the transcription of AtERF71/HRE2 through a HD-Zip II-binding-like cis- regulatory element in Arabidopsis Md Bayzid (Pusan National University, Republic of Korea)
PO-017	From root to leaf: The effects of high soil salinity on the defense mechanisms of the phyllosphere Paula Collado Cordon (Duke University)
PO-018	proline content alterative 8 (pca8) acts as a suppressor mutant of atrzf1 (Arabidopsis thaliana ring zinc finger 1) to regulate dehydration and abscisic acid responses in Arabidopsis Ying Gong (Department of Applied Biology, Chonnam National University, Gwangju 61186, Korea)
PO-019	Pectin lyase 1 (PEL1) and Arabidopsis thaliana Ring Zinc Finger 1 (AtRZF1) coordinately regulate osmotic stress response to control vascular development CHORONG PARK (Department of Applied Biology, Chonnam National University, Gwangju 61186,
	Republic of Korea) Functional characterization of Glycine max RING Zinc Finger-Like 1 (GmRZFL1) and Solanum lycopersicum RING Zinc Finger-Like 1 (SIRZFL1) regulates dehydration sensitivity in Arabidopsis
PO-020	thaliana Cheol Soo Kim (Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea)
PO-021	Meta-Analysis of Public RNA Sequencing Data of Multiple Abiotic Stresses in Arabidopsis thaliana Provides New Insights into both ABA-Dependent and ABA-Independent Stress Responsive Genes Mitsuo Shintani (Hiroshima University, Japan)
PO-022	Analysis of the transcription factor SGR5 that functions in the drought resistance mechanism Moeca Arai (Bioproduction Research Institute, AIST)
PO-023	An NPH3 domain protein mediates safe proline accumulation and drought resistance via function in intra-cellular trafficking.
	Neha Upadhyay Tiwari (IPMB, Academia Sinica, Taipei, Taiwan)

Data as of 2023/4/22. "CC##" indicates the presentation being selected for a short talk in that session. Only the 1ry affiliation is shown per person. No italic, superscript, or subscript is reflected. Poster: page 1 of 30

PO-024	Improving plant productivity and drought tolerance by regulating the NAD salvage pathway in Arabidopsis
	Zarnab Ahmad (Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan)
PO-025	Identification of upstream kinases that regulate SnRK2 kinases in Arabidopsis Fumiyuki Soma (Institute of Crop Science, National Agriculture and Food Research Organization)
PO-026	Functional Analyses of Arabidopsis bZIP Transcription Factor Involved in Drought Tolerance Yoshimi Nakano (National Institute of Advanced Industrial Science and Technology (AIST))
PO-027	Hyperosmolarity-induced suppression of Raf-like protein kinase modulates physiological trade-off between growth and stress responses in Arabidopsis.
50.000	Yoshiaki Kamiyama (Tokyo Univ. Agric. Tech., Japan) SnRK2-substrate 1 is phosphorylated in response to drought stress and accumulated to maintain
PO-028	plant growth. Sotaro Katagiri (Tokyo Univ. of Agric. and Thec., Japan)
PO-029	Identification of new targets for improving abiotic stress tolerance in plants María del Rosario González Bermúdez (Instituto de Biologia Molecular y Celular de Plantas (IBMCP-UPV-
CC27	CSIC), Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), 46022, Spain.)
DO 6555	Plant GSK-like kinase partcipates in the activation the B-RAF kinase under osmotic stress in
PO-030	Arabidopsis Zhen Lin (Southern University of Science and Technology, China)
PO-031	Diverse transcriptional regulation in response to drought in Brachypodium distachyon ecotypes Anzu Minami (RIKEN Center for Sustainable Resource Science, Japan)
PO-032	Ethanol treatment enhances drought stress avoidance in cassava (Manihot esculenta Crantz) Anh Thu Vu (Plant Genomic Network Research Team, CSRS, RIKEN, Japan)
PO-033	1-Butanol treatment enhances drought stress tolerance in Arabidopsis thaliana <i>Quynh Thi Nhu Do (Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource</i>
PO-034	Science, Japan) Physiological responses of drought tolerant and sensitive Kimchi cabbage varieties during seedling
10-004	stage drying exposure Yoonah Jang (National Institute of Horticulral and Herbal Science, Republic of Korea)
PO-035	Using Thermal Imaging to Assess the Water Status of Rice Yan-Ci Zhang (Department of Agronomy, National Chung Hsing University, Taiwan)
PO-036	Determining the Levels of Water Deficiency in Oryza sativa by Using Remote Sensor Tzu-Chiao Liao (Department of Agronomy, National Chung Hsing University, Taiwan)
	Phenome analysis focusing on small open reading frames found an Arabidopsis-specific emerged de
PO-037	novo gene enhancing drought tolerance. Tomoyuki Takeda (Kyushu Institute of Technology, Japan)
PO-038	Characterization and molecular improvement of isothiocyanate-based inhibitors on stomatal opening that act as drought tolerance-conferring agrochemicals Yusuke Aihara (ITbM, Nagoya Univ., Japan)
PO-039	SnRK2 mediates SIZ1 phosphorylation and global SUMOylation increment upon osmotic stresses sang tian (SUSTC, China)
PO-040	Molecular Characterization and Expression Analysis of Nuclear Factor Y in wheat (Triticum aestivum L.) Ji woo Kim (Division of Life Sciences, Jeonbuk National University, Republic of Korea)
PO-041	Response of Arabidopsis thaliana to flooding with physical flow
CC25	Nobuhiro Suzuki (Sophia University, Japan)
PO-042	A translational agricultural study from Arabidopsis to cabbage: determination of mechanisms enhancing submergence tolerance in cabbage (Brassica oleracea L. var. capitata) Fu-Chiun Hsu (National Taiwan University, Taiwan)
PO-043	Drought Recovery Induced Immunity Confers Pathogen Resistance

02 Abiotic response (temperature)

PO-044	Latitudinal gradient of molecular phenology unravels the physiological mechanism of bud dormancy Atsuko Miyawaki Kuwakado (Kyushu University, Japan)
	Analysis of transcriptional regulations of temperature-stress inducible genes mediated by clock-
PO-045	related transcription factors in Arabidopsis
	Satoshi Kidokoro (Sch. of Life Sci. and Tech., Tokyo Tech, Japan)
PO-046	SMAX1 potentiates phytochrome B-mediated hypocotyl thermomorphogenesis
	Chung-Mo Park (Seoul National University, Korea)
	Genome-wide epigenetic changes by warm temperature trigger developmental reprogramming in
PO-047	Arabidopsis
	Junghyun Kim (The University of Texas at Austin, USA)
PO-048	Evolution of plant responses to elevated ambient temperature Alvaro Montiel Jorda (School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom)

PO-049	Genetic determinants of thermal response Sourav Mukherjee (School of Biological Sciences, Monash University, VIC 3800, AUSTRALIA)
	Thermosensory Transcription Factors Activate Thermoresponsive Gene Expression by Forming
PO-050	Biomolecular Condensates with the Mediator Complex Yongjian Qiu (The University of Mississippi, USA)
PO-051	Memory of 5-min heat stress is associated with pathogen defense mechanisms in Arabidopsis Rio Shimizu (Sophia University, Japan)
PO-052	BrbZIP-S, a bZIP transcription factor from Brassica rapa, enhanced stress tolerance in Nicotiana benthamiana.
	Tae Kyung Hyun (Department of Industrial Plant Science and Technology, Chungbuk National University)
PO-053	Transcription factor and chromatin-based heat memory in plants
CC25	Nobutoshi Yamaguchi (Nara Institute of Science and Technology) Sensitized expression of LEARNED HEAT MEMORY 1 through histone modification confers
PO-054	thermotolerance in Arabidopsis thaliana. xuejing wang (Nara institute of science and technology, Japan)
PO-055	Maintenance of abiotic stress memory in plants: Lessons learned from heat acclimation
	Yee-yung Charng (Agricultural Biotechnology Research Center, Academia Sinica, Taiwan)
PO-056	Epidermal Cell Type-Specific Chromatin Dynamics Underlying Arabidopsis Heat Stress Memory
CC02	Daniel Slane (Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan)
PO-057	Regulatory roles of microRNA164 enhanced thermotolerance
	JENG-SHANE LIN (National Chung Hsing University)
PO-058	The Regulated Mechanism of miR163 and Its Target Genes on Plant Thermotolerance ZHEN YUAN KOK (National Chung Hsing University, Taiwan)
DO 050	Deciphering the role of the conserved microRNA169 in enhancing yield and thermotolerance in
PO-059	Arabidopsis Apoorva Gupta (National Institute of Plant Genome Research (NIPGR), New Delhi, India)
PO-060	Characterization of Arabidopsis ECT family in stress tolerance and stress granules assembly
CC11	Nicolas Figueroa Fuentealba (King Abdullah University of Science and Technology (KAUST), Saudi
	Arabia) Prolonged Exposure to High Temperature Inhibits Shoot Primary and Root Secondary Growth in
PO-061	Panax ginseng
	Jeongeui Hong (Chungbuk National University, Republic of Korea)
PO-062	Identification of Protein Kinases Involved in the Post-translational Regulation of the Stress-
FO-002	Responsive Transcription Factor DREB2A Junya Mizoi (Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan)
PO-063	atDjB3, a class II J-domain protein, regulates heat stress response in Arabidopsis thaliana
	Gouri Satheesh (Indian Institute of Science Education and Research, Bhopal, India)
PO-064	Arabidopsis F-box protein EID1 regulates acquired thermotolerance through post-translational modification of HEAT SHOCK FACTOR BINDING PROTEIN
1 0-004	GUAN-LIN CHUO (National Taiwan University, Taiwan)
	Heat-regulated phosphorylation of TOT43 is a switch for stress granule association to contribute to
PO-065	heat tolerance in Arabidopsis
CC11	Shao-Li Yang (Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium) On the mechanism of maintaining heat acclimation memory by the HSP101-HSA32 module in
PO-066	Arabidopsis
	Suma Mitra (Agricultural Biotechnology Research Center (ABRC), Academia Sinica, Taipei)
PO-067	Ethanol treatment induces heat tolerance in plants
PO-068	Daisuke Todaka (Plant Genomic Network Research Team, RIKEN CSRS, Japan) Phototropin mediates periodic cold priming in Arabidopsis
	Minoru Noguchi (Utsunomiya University, Japan)
	REVEILLE2 Thermosensitive Splicing: A Molecular Basis for the Integration of Nocturnal Temperature
PO-069	Information by the Arabidopsis Circadian Clock Matt Jones (University of Glasgow)
PO-070	Role of thioredoxins and regulation of carbon metabolism in acclimation to low temperatures
	David Gonzalez-Campo (LMU Munich)
PO-071	Revealing the role of GNOM ARF-GEF in regulating cold stress response through a comparative
	proteomic approach Sumaiya Jannat Tapati (The United Graduate School of Agricultural Sciences, Iwate University, Morioka
Online-only	020-8550, Japan)
	Exploration of functional short peptides for protection against protein aggregation and instability in
PO-072 Online-only	plants Hidefumi Hamasaki (Riken Yokohama Institute)
chillio only	

03 Abiotic response (others)

PO-073	Forward genetic screens to elucidate the molecular mechanism of alternative promoter selection in plants and yeasts Yoshiro Murakami (Kyoto University, Japan)
PO-074	Stomatal characteristics of an Arabidopsis: Natural accession with high sensitivity to increased CO2 concentration Tomoki Shuno (Dept. Biol., Fac. Sci., Univ. Kyushu)
	Stomatal CO2/bicarbonate Sensor Consists of Two Interacting Protein Kinases HT1 and MPK4/12 in
PO-075 CC09	Arabidopsis Yohei Takahashi (University of California San Diego, USA)
PO-076	Analysis of the role of RLDs in the gravity response of shoot using Arabidopsis thaliana Takeshi Nishimura Nishimura (National Institute for Basic Biology)
PO-077	LZY3 is localized on the plasma membrane to transduce the gravity signal in columella cells Hiromasa Shikata (National Institute for Basic Biology, NINS, Japan)
PO-078	The role of LAZY1-LIKE 4 in the signaling process in the gravity sensing cells in root gravitropism Miyo Terao Morita (National Institute for Basic Biology, Japan)
PO-079	Genetic framework for the coordination of shoot gravitropic setpoint angle by TILLER ANGLE CONTROL1 Nozomi Kawamoto (National Institute for Basic Biology)
PO-080	Nicotianamine secretion for Zinc tolerance Kuo-Chen Yeh (Academia Sinica)
	Overexpression of a Tagetes patula Ascorbate peroxidase 1 in Arabidopsis enhances cadmium
PO-081	tolerance Chwan-Yang Hong (National Taiwan University, Taiwan)
PO-082	Environmental pH governs the phospho-switching of major plasma-membrane transporters Dharmesh Jain (Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate
	Program, Academia Sinica and National Chung-Hsing University, Taipei 11529, Taiwan, Reconfiguration of central metabolites during abiotic stress periods modulate defense to pathogens
PO-083	in Arabidopsis ANTONI GARCIA-MOLINA (CENTER OF RESEARCH IN AGRIGENOMICS (CRAG))
PO-084	Meta-Analysis of RNA Sequencing Data of Arabidopsis and Rice under Hypoxia Keita Tamura (Hiroshima University, Japan)
PO-085	Abiotic Stress Modulated Plant U-Box Ubiquitin Ligases – Expression, Phenotype and Regulation Dudy Bar-Zvi (Ben-Gurion University of the Negev)
04 Patho	ogen & insect response/Immunity
PO-086	Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore)
	Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore) Transcriptome Analysis of Dangerous Mix Autoimmunity in A. thaliana
PO-086	Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore) Transcriptome Analysis of Dangerous Mix Autoimmunity in A. thaliana Donghui HU (National University of Singapore, Singapore) Characterization of an antagonistic NLR pair in plant autoimmunity
PO-086 PO-087	 Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore) Transcriptome Analysis of Dangerous Mix Autoimmunity in A. thaliana Donghui HU (National University of Singapore, Singapore) Characterization of an antagonistic NLR pair in plant autoimmunity Yin Yin Liew (National University of Singapore) Genetic Requirements of DM10-DM11 Autoimmunity in Arabidopsis thaliana
PO-086 PO-087 PO-088 PO-089	 Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore) Transcriptome Analysis of Dangerous Mix Autoimmunity in A. thaliana Donghui HU (National University of Singapore, Singapore) Characterization of an antagonistic NLR pair in plant autoimmunity Yin Yin Liew (National University of Singapore) Genetic Requirements of DM10-DM11 Autoimmunity in Arabidopsis thaliana Jinge Wang (National University of Singapore, Singapore)
PO-086 PO-087 PO-088	 Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore) Transcriptome Analysis of Dangerous Mix Autoimmunity in A. thaliana Donghui HU (National University of Singapore, Singapore) Characterization of an antagonistic NLR pair in plant autoimmunity Yin Yin Liew (National University of Singapore) Genetic Requirements of DM10-DM11 Autoimmunity in Arabidopsis thaliana Jinge Wang (National University of Singapore, Singapore) Highly variable plant immune receptors share distinct genomic and epigenomic features Ksenia Krasileva (University of California, Berkeley)
PO-086 PO-087 PO-088 PO-089	 Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore) Transcriptome Analysis of Dangerous Mix Autoimmunity in A. thaliana Donghui HU (National University of Singapore, Singapore) Characterization of an antagonistic NLR pair in plant autoimmunity Yin Yin Liew (National University of Singapore) Genetic Requirements of DM10-DM11 Autoimmunity in Arabidopsis thaliana Jinge Wang (National University of Singapore, Singapore) Highly variable plant immune receptors share distinct genomic and epigenomic features Ksenia Krasileva (University of California, Berkeley) A Self-Compartmentalized Alpha/Beta Hydrolase Complex Participates in NLR-mediated Immunity in Plants
PO-086 PO-087 PO-088 PO-089 PO-090	 Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore) Transcriptome Analysis of Dangerous Mix Autoimmunity in A. thaliana Donghui HU (National University of Singapore, Singapore) Characterization of an antagonistic NLR pair in plant autoimmunity Yin Yin Liew (National University of Singapore) Genetic Requirements of DM10-DM11 Autoimmunity in Arabidopsis thaliana Jinge Wang (National University of Singapore, Singapore) Highly variable plant immune receptors share distinct genomic and epigenomic features Ksenia Krasileva (University of California, Berkeley) A Self-Compartmentalized Alpha/Beta Hydrolase Complex Participates in NLR-mediated Immunity in Plants Wei-Lin Wan (National University of Singapore, Singapore) 2D-Phase separation of pathogen effectors subverts plant defence
PO-086 PO-087 PO-088 PO-089 PO-090 PO-091	 Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore) Transcriptome Analysis of Dangerous Mix Autoimmunity in A. thaliana Donghui HU (National University of Singapore, Singapore) Characterization of an antagonistic NLR pair in plant autoimmunity Yin Yin Liew (National University of Singapore) Genetic Requirements of DM10-DM11 Autoimmunity in Arabidopsis thaliana Jinge Wang (National University of Singapore, Singapore) Highly variable plant immune receptors share distinct genomic and epigenomic features Ksenia Krasileva (University of California, Berkeley) A Self-Compartmentalized Alpha/Beta Hydrolase Complex Participates in NLR-mediated Immunity in Plants Wei-Lin Wan (National University of Singapore, Singapore) 2D-Phase separation of pathogen effectors subverts plant defence xinlu zhu (School of Biological Sciences, Nanyang Technological University, 637551,Singapore) Bacterial effector hopAM1 activity reconfigures ETI responses.
PO-086 PO-087 PO-088 PO-089 PO-090 PO-091 PO-092	 Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore) Transcriptome Analysis of Dangerous Mix Autoimmunity in A. thaliana Donghui HU (National University of Singapore, Singapore) Characterization of an antagonistic NLR pair in plant autoimmunity Yin Yin Liew (National University of Singapore) Genetic Requirements of DM10-DM11 Autoimmunity in Arabidopsis thaliana Jinge Wang (National University of Singapore, Singapore) Highly variable plant immune receptors share distinct genomic and epigenomic features Ksenia Krasileva (University of California, Berkeley) A Self-Compartmentalized Alpha/Beta Hydrolase Complex Participates in NLR-mediated Immunity in Plants Wei-Lin Wan (National University of Singapore, Singapore) 2D-Phase separation of pathogen effectors subverts plant defence xinlu zhu (School of Biological Sciences, Nanyang Technological University, 637551, Singapore) Bacterial effector hopAM1 activity reconfigures ETI responses. Nestoras Kargios (University of Warwick, UK) A plant defence metabolite disarms bacterial type III injectisome assembly
PO-086 PO-087 PO-088 PO-089 PO-090 PO-091 PO-092 PO-093	Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore) Transcriptome Analysis of Dangerous Mix Autoimmunity in A. thaliana Donghui HU (National University of Singapore, Singapore) Characterization of an antagonistic NLR pair in plant autoimmunity Yin Yin Liew (National University of Singapore) Genetic Requirements of DM10-DM11 Autoimmunity in Arabidopsis thaliana Jinge Wang (National University of Singapore, Singapore) Highly variable plant immune receptors share distinct genomic and epigenomic features Ksenia Krasileva (University of California, Berkeley) A Self-Compartmentalized Alpha/Beta Hydrolase Complex Participates in NLR-mediated Immunity in Plants Wei-Lin Wan (National University of Singapore, Singapore) 2D-Phase separation of pathogen effectors subverts plant defence xinlu zhu (School of Biological Sciences, Nanyang Technological University, 637551,Singapore) Bacterial effector hopAM1 activity reconfigures ETI responses. Nestoras Kargios (University of Warwick, UK) A plant defence metabolite disarms bacterial type III injectisome assembly Pei Miao (Institute of Genetics and Developmental Biology, Beijing) Bacteria Pathogen Subvert Plant Innate Immunity via Phase Separating Effectors
PO-086 PO-087 PO-088 PO-089 PO-090 PO-091 PO-091 PO-092 PO-093 PO-094	 Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore) Transcriptome Analysis of Dangerous Mix Autoimmunity in A. thaliana Donghui HU (National University of Singapore, Singapore) Characterization of an antagonistic NLR pair in plant autoimmunity Yin Yin Liew (National University of Singapore, Singapore) Genetic Requirements of DM10-DM11 Autoimmunity in Arabidopsis thaliana Jinge Wang (National University of Singapore, Singapore) Highly variable plant immune receptors share distinct genomic and epigenomic features Ksenia Krasileva (University of California, Berkeley) A Self-Compartmentalized Alpha/Beta Hydrolase Complex Participates in NLR-mediated Immunity in Plants Wei-Lin Wan (National University of Singapore, Singapore) 2D-Phase separation of pathogen effectors subverts plant defence xinlu zhu (School of Biological Sciences, Nanyang Technological University, 637551,Singapore), Bacterial effector hopAM1 activity reconfigures ETI responses. Nestoras Kargios (University of Warwick, UK) A plant defence metabolite disarms bacterial type III injectisome assembly Pei Miao (Institute of Genetics and Developmental Biology, Beijing) Bacteria Pathogen Subvert Plant Innate Immunity via Phase Separating Effectors Yi Xie (School of Biological Sciences, Nanyang Technological University, Singapore)
PO-086 PO-087 PO-088 PO-089 PO-090 PO-091 PO-091 PO-092 PO-093 PO-094	Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore) Transcriptome Analysis of Dangerous Mix Autoimmunity in A. thaliana Donghui HU (National University of Singapore, Singapore) Characterization of an antagonistic NLR pair in plant autoimmunity Yin Yin Liew (National University of Singapore) Genetic Requirements of DM10-DM11 Autoimmunity in Arabidopsis thaliana Jinge Wang (National University of Singapore, Singapore) Highly variable plant immune receptors share distinct genomic and epigenomic features Ksenia Krasileva (University of California, Berkeley) A Self-Compartmentalized Alpha/Beta Hydrolase Complex Participates in NLR-mediated Immunity in Plants Wei-Lin Wan (National University of Singapore, Singapore) 2D-Phase separation of pathogen effectors subverts plant defence xinlu zhu (School of Biological Sciences, Nanyang Technological University, 637551,Singapore) Bacterial effector hopAM1 activity reconfigures ETI responses. Nestoras Kargios (University of Warwick, UK) A plant defence metabolite disarms bacterial type III injectisome assembly Pei Miao (Institute of Genetics and Developmental Biology, Beijing) Bacteria Pathogen Subvert Plant Innate Immunity via Phase Separating Effectors
PO-086 PO-087 PO-088 PO-089 PO-090 PO-091 PO-091 PO-092 PO-093 PO-094 PO-095	 Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore) Transcriptome Analysis of Dangerous Mix Autoimmunity in A. thaliana Donghui HU (National University of Singapore, Singapore) Characterization of an antagonistic NLR pair in plant autoimmunity Yin Yin Liew (National University of Singapore) Genetic Requirements of DM10-DM11 Autoimmunity in Arabidopsis thaliana Jinge Wang (National University of Singapore, Singapore) Highly variable plant immune receptors share distinct genomic and epigenomic features Ksenia Krasileva (University of California, Berkeley) A Self-Compartmentalized Alpha/Beta Hydrolase Complex Participates in NLR-mediated Immunity in Plants Wei-Lin Wan (National University of Singapore, Singapore) 2D-Phase separation of pathogen effectors subverts plant defence xinlu zhu (School of Biological Sciences, Nanyang Technological University, 637551,Singapore) Bacterial effector hopAM1 activity reconfigures ETI responses. Nestoras Kargios (University of Warwick, UK) A plant defence metabolite disarms bacterial type III injectisome assembly Pei Miao (Institute of Genetics and Developmental Biology, Beijing) Bacteria Pathogen Subvert Plant Innate Immunity via Phase Separating Effectors Yi Xie (School of Biological Sciences, Nanyang Technological University, Singapore) Deciphering SA-triggered plant stress responses through epitranscriptomic m6A regulation in cytosolic condensates Kaiwei Liu (Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences. Shanghai, China)
PO-086 PO-087 PO-088 PO-089 PO-090 PO-091 PO-091 PO-092 PO-093 PO-094 PO-095	Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore) Transcriptome Analysis of Dangerous Mix Autoimmunity in A. thaliana Donghui HU (National University of Singapore, Singapore) Characterization of an antagonistic NLR pair in plant autoimmunity Yin Yin Liew (National University of Singapore) Genetic Requirements of DM10-DM11 Autoimmunity in Arabidopsis thaliana Jinge Wang (National University of Singapore) Highly variable plant immune receptors share distinct genomic and epigenomic features Ksenia Krasileva (University of California, Berkeley) A Self-Compartmentalized Alpha/Beta Hydrolase Complex Participates in NLR-mediated Immunity in Plants Wei-Lin Wan (National University of Singapore, Singapore) 2D-Phase separation of pathogen effectors subverts plant defence xinlu zhu (School of Biological Sciences, Nanyang Technological University, 637551,Singapore) Bacterial effector hopAM1 activity reconfigures ETI responses. Nestoras Kargios (University of Warwick, UK) A plant defence metabolite disarms bacterial type III injectisome assembly Pei Miao (Institute of Genetics and Developmental Biology, Beijing) Bacteria Pathogen Subvert Plant Innate Immunity via Phase Separating Effectors Yi Xie (School of Biological Sciences, Nanyang Technological University, Singapore) Deciphering SA-triggered plant stress responses through epitranscriptomic m6A regulation in cytosolic condensates Kaiwei Liu (Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai, China) Study on the interaction between Ralstonia solanacearum effector RsT3E-P and ACC oxidases in pattern-triggered immunity
PO-086 PO-087 PO-088 PO-089 PO-090 PO-091 PO-091 PO-092 PO-093 PO-094 PO-095 PO-096	 Characterisation of a TIR-NLR mediated immune activation with an alpha/beta-hydrolase fold protein Yi Yun Tan (National University of Singapore, Singapore) Transcriptome Analysis of Dangerous Mix Autoimmunity in A. thaliana Donghui HU (National University of Singapore, Singapore) Characterization of an antagonistic NLR pair in plant autoimmunity Yin Yin Liew (National University of Singapore) Genetic Requirements of DM10-DM11 Autoimmunity in Arabidopsis thaliana Jinge Wang (National University of Singapore, Singapore) Highly variable plant immune receptors share distinct genomic and epigenomic features Ksenia Krasileva (University of California, Berkeley) A Self-Compartmentalized Alpha/Beta Hydrolase Complex Participates in NLR-mediated Immunity in Plants Wei-Lin Wan (National University of Singapore, Singapore) 2D-Phase separation of pathogen effectors subverts plant defence xinlu zhu (School of Biological Sciences, Nanyang Technological University, 637551,Singapore, Bacterial effector hopAM1 activity reconfigures ETI responses. Nestoras Kargios (University of Warwick, UK) A plant defence metabolite disarms bacterial type III injectisome assembly Pei Miao (Institute of Genetics and Developmental Biology, Beijing) Bacteria Pathogen Subvert Plant Innate Immunity via Phase Separating Effectors Yi Xie (School of Biological Sciences, Nanyang Technological University, Singapore) Deciphering SA-triggered plant stress responses through epitranscriptomic m6A regulation in cytosolic condensates Kaiwei Liu (Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai, China) Study on the interaction between Ralstonia solanacearum effector RsT3E-P and ACC oxidases in

Data as of 2023/4/22. "CC###" indicates the presentation being selected for a short talk in that session. Only the 1ry affiliation is shown per person. No italic, superscript, or subscript is reflected. Poster: page 4 of 30

PO-099	Bacterial pathogens deliver water/solute-permeable channels as a virulence strategy Kinya Nomura (Howard Hughes Medical Institute, Duke University, USA)
PO-100	Identification of yeast-secreted proteins to induce plant immune responses Chian Kwon (Dankook University, Korea)
	Chiran Kwon (Dankook Oniversity, Korea) Characterization of high mobility group box proteins as conserved plant damage-associated
PO-101	molecular patterns Yukihisa Goto (Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Z ürich, Zürich, Switzerland)
PO-102	Functional study on roles of Solyc12gA-interacting proteins in plant innate immunity Yu Chuan Chiu (Institute of Plant Biology, National Taiwan University)
	Assessing the Impact of Plant Immunity on Agrobacterium-Mediated Transformation by Floral
PO-103	Inoculation: Insights from the EFR Gene in Arabidopsis Mao-Sen Liu (Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan)
50.404	A bacterial typeⅢ effector requires the LRR-RK KIN7 to negatively regulate FLS2 homeostasis in
PO-104	Arabidopsis thaliana Yasuhiro Kadota (RIKEN Center for Sustainable Resource Science (CSRS))
PO-105	Valinomycin, a putative bi-directional natural compound with antifungal and immune-priming activity Nayeon Yoo (Department of Plant Biotechnology, Korea University, Seoul 02841, Republic of Korea)
PO-106	Gene regulatory network induced by Western flower thrips
	Saskia van Wees (Utrecht University) Effects of Turnip mosaic virus on Arabidopsis halleri-aphid interaction and the exploration of its
PO-107	causal genes in a natural environment.
	Miyabi Otsubo (Center for Ecological Research, Kyoto University, Japan) Quantitative analysis of the feeding behavior of herbivorous insects on Arabidopsis leaves reveals
PO-108	detailed mechanisms of trichomes contribution to plant defense
PO-109	Naoyuki Sotta (The University of Tokyo, Japan) Decision factors of morphological diversity in insect galls
10-103	Kanako Bessho-Uehara (Tohoku University)
DO 110	Wound induced small-peptide mediated signalling cascade regulated by a receptor like kinase- RLK1
PO-110	dictates growth vs defense decision in rice HARSHITH CHITHAVALLI YOGESH GOWDA (National Centre For Biological Sciences, TIFR, India, 560 065)
	Small cyclic peptides that enhance disease resistance in Arabidopsis thaliana and Brachypodium
PO-111	distachvon Yoshiteru Noutoshi (Okayama University)
PO-112	Defense signal sensitization in response to damage-associated Pep peptides during phosphate starvation response
	Natsuki Tsuchida (Nara Institute of Science and Technology)
PO-113	XCP1 cleaves Pathogenesis-related protein 1 into CAPE9 for systemic immunity in Arabidopsis Yu-Hsuan Huang (Agricultural Biotechnology Research Center, Academia Sinica, Taiwan)
PO-114	14-3-3 proteins facilitate the activation of MAP kinase cascades by upstream immunity-related
F0-114	kinases Xiaojing Dong (Institute of Genetics and Developmental Biology)
PO-115	Dimerization and activation of Arabidopsis MAPKKKs in chitin-induced immunity.
PO-116	Koji Yamaguchi (Grad. Sch. Agri., Kindai Univ) Time-resolved MAPK activation shapes dynamics of defense responses in Arabidopsis
	Hoo Sun Chung (Ghent University Global Campus, South Korea)
PO-117	Bacterial effectors disrupt host chloroplast functions for virulence Charles Roussin-Leveillee (Universite de Sherbrooke, Canada)
	Receptor-like cytosolic kinase RIPK confers broad-spectrum disease resistance without yield
PO-118	penalties
PO-119	Yan Liang (Zhejiang University, China) The perception of quinones and reactive oxygen species by CARD1/HPCA1 in Arabidopsis
	Anuphon Laohavisit (Institute of Transformative Bio-Molecules, Nagoya University, Japan)
PO-120	The cytosolic thiol peroxidase PRXIIB is an intracellular sensor for H2O2 that regulates plant immunity through a redox relay
	Man Hu (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences)
PO-121	Conserved molecular regulatory mechanism of the ROS-producing activity of RBOHs by phosphorylation and Ca2+ binding in land plants
10-121	Takafumi Hashimoto (Tokyo University of Science, Japan)
PO-122	Oomycete effector AVRblb2 inhibits Ca2+ influx by targeting cyclic nucleotide-gated channel through
PO-122	Ca2+ sensors to suppress immune response Soeui Lee (Plant Immunity Research Center, Plant Genomics and Breeding Institute, Seoul National University Description of Kenne)
	University, Seoul, 08826, Republic of Korea) Involvement of two cyclic nucleotide-gated ion channel subunits in jasmonic acid-mediated immune
PO-123	signaling
	Hyunsuh Lee (University of Toronto, Canada) An Interactor of CYCLIC NUCLEOTIDE-GATED ION CHANNEL 12 enhances downstream immune
PO-124	signaling events
	Robin Hon Ming Goh (Department of Cell & Systems Biology, University of Toronto)

Data as of 2023/4/22. "CC##" indicates the presentation being selected for a short talk in that session. Only the 1ry affiliation is shown per person. No italic, superscript, or subscript is reflected. Poster: page 5 of 30

	An attractive case of plant-virus coevolution supports the idea that non-canonical nucleotides within
PO-125	the host play an antiviral role Adrian Alejandro Valli (Spanish National Centre for Biotechnology (CNB-CSIC))
PO-126	Ethylene signal modulates survival of leaf explants in Arabidopsis Chae-min Lee (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and
	Biotechnology, Korea)
PO-127	Molecular mechanism of tenoxicam that inhibits plant immune responses Nobuaki Ishihama (RIKEN CSRS, Japan)
PO-128	Extracellular NAD(P) is a central signaling molecule of systemic acquired resistance Zhonglin Mou (Department of Microbiology and Cell Science, University of Florida, USA)
PO-129	Identification of epigenetically regulated genes in plant-virus interaction Regis Lopes Correa (Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de
PO-130	Investigaciones Cientificas (CSIC) and Universidad de Valencia, Spain) A novel function for transcriptional regulators IBM2 and EDM2 as limiters of salicylic acid-dependant
PO-130	defence genes in Arabidopsis. Leonardo Furci (OIST)
PO-131	ELF18 INDUCED LONG NONCODING RNA 2 regulates the defense response by modulating CHITINASE expression
10-101	Jun Sung Seo (Institution of GreenBio Science and Technology, Seoul National University, Republic of Korea)
PO-132	Identification of binding proteins of long non-coding RNA that act in plant infection defense HUIYUAN JIA (Nagoya City University, Japan)
PO-133	AGO2 condensates behavior after bacterial inoculation Moriaki Saito (Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for
CC22	Integrative Genome Biology, University of California, Riverside, USA)
PO-134	Translational control of pathogen-triggered gene expression in the Arabidopsis root: global and gene-specific approaches Wolfgang Dröge-Laser (University of Würzburg)
PO-135	Translation dynamics of the plant-virus interaction
	Gemma Sans-Coll (Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC))
	Translation initiation landscape profiling reveals hidden open-reading frames required for the
PO-136	pathogenesis of tomato yellow leaf curl Thailand virus Chin-Wen Chiu (The Agricultural Biotechnology Research Center of Academia Sinica, Taiwan)
PO-137	DNA binding activity of CAMTA3 is essential for its function: Identification of critical amino acids for its transcriptional activity KASAVAJHALA V.S.K. Prasad (Department of Biology, Colorado State University, Fort Collins, CO- 80526, USA)
	Subgenome-dominant expression and alternative splicing in response to Sclerotinia infection in
PO-138	polyploid Brassica napus and progenitor species Keith Adams (University of British Columbia)
PO-139	Should I stay or should I go: nuclear mRNA retention during plant defense Tessa Visscher (Plant-Microbe Interactions, Utrecht University, the Netherlands)
PO-140	The Role of Nuclear Pore during Effector-triggered Immunity Xing Zhang (Howard Hughes Medical Institute and Duke University)
PO-141	Novel eINTACT system dissects bacterial exploitation of plant osmosignaling to promote disease Yuan You (Technical University of Munich, Germany)
PO-142	Proteomic analysis to understand chloroplast-nucleus communication in plant immunity. Seungmee Jung (Department of Molecular Biology, College of Agriculture, Life Sciences and Natura)
	Resources, University of Wyoming, Laramie, WY USA.) Toward identification of host cell death-inducing genes of Colletotrichum higginsianum via transient
PO-143	gene expression in Arabidopsis thaliana leaves Katsuma Yonehara (RIKEN, Japan)
PO-144	Dynamics of Plasma Membrane Nanodomains during Disease Response in Arabidopsis thaliana Saki Takayama (Ritsumeikan University, Japan)
PO-145	Microbiota-mediated immunocompetence in Arabidopsis Bradley C. Paasch (Duke University, USA)
PO-146	The gene regulatory network in roots that create a disease suppressive soil Run Qi (Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University,
	Utrecht, Netherlands)
PO-147	Functional analysis of rym-mediated resistance against Barley yellow mosaic virus infection to root and leaf in barley
1011	Hongjing Zhu (Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan)
PO-148	Is Ca2+-induced activation of Arabidopsis lipoxygenase 2 involved in green leaf volatile burst?
CC21 PO-149	Kenji Matsui (Yamaguchi University, Japan) Functions of Green Leaf Volatiles in Direct and Indirect Defense of Plants against Herbivores
PO-150	Rika Ozawa (Kyoto University, Japan) Real-time visualization of green leaf volatile-sensory Ca2+ signaling in Arabidopsis
. 0 100	Masatsugu Toyota (Saitama University)

Data as of 2023/4/22. "CC##" indicates the presentation being selected for a short talk in that session. Only the 1ry affiliation is shown per person. No italic, superscript, or subscript is reflected. Poster: page 6 of 30

PO-151	Single-cell gene expression profiles of glucosinolate-myrosinase defense system-associated cells Taro Maeda (Keio University, Japan)
	The phytocytokine AtCAPE9 and its receptor AtCAPER1 functions on plant systemic stomatal
PO-152	immunity
CC14	Chi-Hsin Chang (Agricultural Biotechnology Research Center, Academia Sinica, Taiwan)
	Investigating the Role of Carbohydrate Metabolism in Bacterial-Triggered Stomatal Movements Using
PO-153	the Model System Arabidopsis thaliana and Pseudomonas syringe pv tomato
CC09	Lucia Piro (ETH Zurich)
	High humidity-induced abscisic acid catabolism critical for plant resistance against bacterial water
PO-154	acquisition and pathogenesis
	Shigetaka Yasuda (Nara Institute of Science and Technology, Japan)
PO-155	Preserving salicylic acid-mediated plant immunity in a warming climate
	Jonghum Kim (Department of Biology, Duke University, USA)

05 Symbiosis/Parasitism

PO-156	Iron effects on prehaustorium formation in Phtheirospermum japonicum MOHD HAFIFI BIN ABU BAKAR (Nara Institute of Science and Technology)
PO-157	A role for phytocytokines during parasitic plant haustorium formation Maxwell Fishman (RIKEN Center for Sutainable Resource Science)
	snRNA-seq reveals the transcriptional landscape for host-regulated vascular connections in
PO-158	Arabidopsis and parasitic plant interaction. Mengqi Cui (Nara Institute of Science and Technology)
PO-159	Characterization of rhizobacteria-induced immunity using Arabidopsis Mack Loranger (Department of Cell & Systems Biology, University of Toronto)
PO-160 CC13	Studying the genetic basis for plant-microbe associations using a synthetic biology approach Jose R Dinneny (Stanford University)
	Involvement of receptor proteins for peptidoglycans in mediation of growth promoting effects by
PO-161	Bacillus pumilus TUAT1 in Arabidopsis thaliana. Md Monirul Islam (Institute of Food and Radiation Biology, Bangladesh Atomic Energy Commission, Dhaka-1207, Bangladesh.)
PO-162	The missing link between Casparian strip integrity and rhizobacterial colonization Huei-Hsuan Tsai (University of Lausanne, Switzerland)
	Rhizobium vitis VAR03-1 enhances Arabidopsis thaliana primary root growth under nutrient-limited
PO-163	conditions Niarsi Merry Hemelda (Okayama University)
	A plant endophytic bacterium, Burkholderia sp. strain 869T2, promotes plant growth of Arabidopsis,
PO-164	lettuces, and several other vegetables Hau-Hsuan Hwang (Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan 402)
	Deciphering the molecular mechanism of plant growth-promoting rhizobacterium Pseudomonas sp.
PO-165	CM11 on plant promotion Zhuang Yang (Cluster of Plant Developmental Biology, Wageningen University and Research,
	Netherlands)
PO-166	Dissecting bacterial root colonization strategies using complex synthetic communities on diverse
10-100	hosts Gijs Selten (Utrecht University)
PO-167	Designing the assessment platform for determining the impacts of microbes to plant stress resilience Tao-Ho Chang (Academy of Circular Economy, National Chung Hsing University, Taiwan)
PO-168	Microbiome colonization leads to emergent plant phenotypes at elevated temperature.
	Hannah M. McMillan (Department of Biology, Duke University, Durham, NC 27708, USA)
	Root endophyte Colletotrichum tofieldiae promotes plant growth and recruits beneficial bacteria to
PO-169	roots under laboratory and field conditions with nitrogen deficiency Kei Hiruma (The University of Tokyo)
PO-170	Root ER bodies and tryptophan derived secondary metabolites modulate root microbiota assembly
Online-only	Arpan Kumar Basak (Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland)

06 Epigenetics

PO-171	Site-specific epigenetic regulation-mediated plant defense resposne Yuan Wang Wang (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences)
PO-172	Elucidation of molecular mechanism underlying the antagonistic roles of class I and II RPD3-like
	histone deacetylases in response to environmental stresses Minoru Ueda (Plant Genomic Network Research Team, RIKEN CSRS, Japan)
PO-173	Hi-C Analyses Reveal Altered Chromatin Conformation Under Elevated CO2 Scott Lewis (Donald Danforth Plant Science Center, MO, USA)
PO-174	Regulatory mechanism of heat-active retrotransposons by SET Domain Proteins SUVH2 Niu Xiaoying (Hokkaido university, Japan)

Data as of 2023/4/22. "CC##" indicates the presentation being selected for a short talk in that session. Only the 1ry affiliation is shown per person. No italic, superscript, or subscript is reflected. Poster: page 7 of 30

	Compensation of H2A.Z and Polycomb Repressive Complex 2 in Determining Plant Cell Fate under
PO-175	Low Ambient Temperature Kehui Zhu (Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and
PO-176	Developmental Biology, Chinese Academy of Sciences, Beijing) Epigenetic regulation by a long-term environment-responsive promoter of Arabidopsis halleri Hoppic Shimizu (Kinto University Jopen)
PO-177	Hanako Shimizu (Kyoto University, Japan) Co-transcriptional regulation of VIN3 expression by a RNA binding protein during vernalization Yusheng Zhao (CAS, institute of genetics and developmental biology)
PO-178	A coiled-coil protein associates Polycomb Repressive Complex 2 with KNOX/BELL transcription factors to maintain silencing of cell differentiation-promoting genes in the shoot apex
PO-179	Wentao Wang (Huazhong Agricultural University) Down to earth: VAL1 and VAL2 affect root development in Arabidopsis
	José María Olvera Herrera (Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, México)
PO-180	Chromatin remodeling in the regulation of somatic genome integrity and meiotic inheritance in Arabidopsis
	Wen Hui Shen (IBMP-CNRS, 12 rue du Général Zimmer, 67084 Strasbourg, France) Transposition and silencing mechanisms of Tpn1 family transposable elements in the Japanese
PO-181	morning glory Yuki Mizunaru (Grad. Sch. of SLS., Kyushu Univ.)
PO-182	Effect of transposon mobilization on genomic imprinting in Arabidopsis Gerardo del Toro de León (Max Planck Institute of Molecular Plant Physiology)
PO-183	Antagonistic regulation of endosperm development by maternally and paternally imprinted genes in Arabidopsis thaliana
	Yuko Wada (Nara Inst. of Sci. and Tech., Japan) Dissecting parent-of-origin allele specific expression in Arabidopsis hybrids using fluorescence-
PO-184	activated nuclear sorting Ida Velle Myking (University of Oslo, Norway)
PO-185	Upstream regulator of genomic imprinting in rice is a small RNA-associated chromatin remodeler Avik Kumar Pal (National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK
	Campus, Bangalore 560 065, India) Sbf I-based DNA double-strand breaks induce histones H4K16ac and H2A.Z deposition at multiple
PO-186	cleavage sites in Arabidopsis thaliana Kohei Kawaguchi (Kyoto Prefectural University, Kyoto, Japan)
PO-187	Single-molecule Targeted Accessibility and Methylation Sequencing of Centromeres, Telomeres, and rDNAs in Arabidopsis Weipeng Mo (Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China)
PO-188	Cotranscriptional demethylation induces global loss of H3K4me2 from active genes in Arabidopsis Shusei Mori (The University of Tokyo, Japan)
PO-189	Regulatory mechanisms and roles of centromere arrangement in Arabidopsis thaliana Takuya Sakamoto (Fac. Sci. Tech., Tokyo Univ. Sci., Japan)
PO-190	Transition of histone H2A.Z distribution on the genic region in the evolution of Arabidopsis Soichirou Satoh (Kyoto Prefectural University, Kyoto, Japan)
PO-191	Gene-transposon transcripts can be epigenetically regulated and impact gene response to stress conditions in Arabidopsis thaliana
CC24	Jeremy Berthelier (Plant Epigenetics Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan)
PO-192	Investigating small RNA-mediated silencing mechanisms in duckweeds Veronica Barragan-Borrero (Gregor Mendel Institute of Molecular Plant Biology, Vienna, Austria)
PO-193 CC12	Translation-coupled Epigenetic Regulation of Transposable Elements in Plants Zhen Lei (CAS Center for Excellence in Molecular Plant Sciences)
PO-194	RNA deadenylation pathway suppresses transposable elements in Arabidopsis Ling Wang (CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and
CC24 PO-195	<i>Ecology</i>) RNA-directed DNA Methylation promotes genome integrity in Arabidopsis epiRILs
	ATSUSHI SHIMADA (Okinawa Institute of Science and Technology, Japan) Identification of underlying mechanisms involved in transposon activity and distribution in natural
PO-196	accessions of Arabidopsis thaliana Laura Diezma Navas (Gregor Mendel Institute (GMI), Vienna, Austria)
PO-197	Comprehensive characterization of transposable element-encoded genes and their function in Arabidopsis thaliana Carles Borredá (Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, INRAE, Universit é Evry, Université Paris Diderot)
PO-198	The roles of histone H2A variants for the establishment of transposon-specific silent modification in Arabidopsis
	Shoko Oda (The University of Tokyo)
PO-199	Induction of T-DNA amplification by retrotransposon-derived sequences Wenxin Yuan (Yale University, Department of Molecular, Cellular and Developmental Biology, New Haven, Connecticut, USA)

	Molecular mechanisms on the maintenance of epigenetic silent marks regulated by histone variant
PO-200	H2A.W and chromatin remodeler DDM1
	Akihisa Osakabe (Department of Biological Sciences, The University of Tokyo, Japan)
PO-201	Re-analysis of publicly available methylomes using signal detection yields new information
	Alenka Hafner (Pennsylvania State University)
	High parent dominance of trimethylation of lysine 27 of histone H3 level in intraspecific hybrids of
PO-202	Arabidopsis thaliana
	Ryo Fujimoto (Kobe University, Japan)
PO-203	The Influence of loss of DECREASE IN DNA METHYLATION 1 function on heterosis in Arabidopsis
	Keita Nishimura (Kobe University, Graduate School of Agricultural Science, Kobe, Japan)
PO-204	Contribution of epigenetic mutations to the adaptive evolution of plant by regulating specialized
	Kazumasa Shirai (Kyushu Institute of Technology, Japan)
PO-205	Live-cell imaging of H3K4me3 in Arabidopsis thaliana
	Megumi Matsuoka (Department of Integrative Biosciences, The University of Tokyo, Japan)
PO-206	Enzyme-based fluorescence labeling of DNA methylation on a chromosome scale
	Min Jeong Kim (Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul
	08826, Korea)
	Real-time visualization of somatic retrotransposition reveals principles of genomic permissivity to
PO-207	transposon integration
	Jie Chu (National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular
	Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.)
PO-208	A Novel strategy to enhance phenotypic variation in plants
Online-only	Hidavah Faisal Alotaibi (Doctor)

07 RNA biology

PO-209	RNA triple helical structure facilitates retrotransposon mobilization in Arabidopsis <i>Hui Li (CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology)</i>
	Proof of concept: circular antisense RNAs (caRNAs) as a new mode of action for RNA-based plant
PO-210	protection
CC28	Timo Schlemmer (University of Regensburg, Regensburg)
	siRNAs derived from nitrate reductases, NIA1 and NIA2, play vital roles in growth and stress
PO-211	adaptation
CC17	Yan Yan (Institute of Plant and Food Science, Department of Biology, Southern University of Science and
0017	Technology, Shenzhen, 518055, China)
PO-212	The negative effect of flavonoids against dsRNA-cleaving activities of Dicer-like proteins
	Midori Tabara (Ritsumeikan University)
PO-213	ARGONAUTE1 nuclear/cytoplasmic shuttling controls small RNA regulation in Arabidopsis thaliana.
	Belén Moro (Centre for Research in Agricultural Genomics (CRAG))
PO-214	Functions of Arabidopsis FHA2 in miRNA biogenesis
	Joong-Tak Yoon (Yonsei University, Republic of Korea)
PO-215	Plant miRNA-target 3'-end pairing affects miRNA-mediated translational repression
CC12	Ho-Ming Chen (Academia Sinica, Taiwan)
	Forward genetics identifies a DEAD box RNA helicase and a DnaJ-domain chaperone as new miRNA
PO-216	biogenesis factors
	Florian Brioudes (Swiss Federal Institute of Technology (ETH), Zürich, Switzerland)
DO 047	Reevaluation of Intracellular DCL1 Localization of Wild-type and Mutant Alleles in Relevance to
PO-217	Functional Ability and Phenotypes
PO-218	Yuichiro Watanabe (Dept. of Life Sciences, Grad. School of Arts and Sciences, University of Tokyo)
F0-210	An Evolutionarily Conserved Secondary Structure motif regulates the miRNA cleavage Yueving Zhang (John Innes Centre,UK)
PO-219	Chromatin-associated microprocessor assembly is regulated by the U1 snRNP auxiliary protein
F0-219	Artur Jarmolowski (Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and
	Biotechnology, Adam Mickiewicz University, Poznan 61-614, Poland.)
	A mutation in the Arabidopsis tri-snRNP associated protein suppressesthe sta1-1 defects by
PO-220	restoring protein-protein interaction
	Heejin Kim (Sogang university, Korea)
PO-221	A U1 snRNP component regulates thermomorphogenesis through alternative RNA splicing in
	Geeng-Loo Chong (Institute of Plant and Microbial Biology, Academia Sinica, Taiwan)
PO-222	Dynamic RNA methylation modulates growth in response to light and temperature in Arabidopsis
	Ullas Pedmale (Cold Spring Harbor Laboratory)
PO-223	Minor-intron splicing is required for proper HSP-mediated plant response to heat shock
	Zofia Szweykowska Kulinska (Department of Gene Expression, Institute of Molecular Biology and
	Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland,
	Serine/Arginine-rich 45-mediated Transcriptional and Splicing Regulation in Plant Immunity in
PO-224	Arabidopsis thaliana
	Xiao-Ning Zhang (St. Bonaventure University, USA)

PO-225	Cleavage Factor I is essential for maintaining the diversity at the 3' ends of mRNA in plants Tomohiko TSUGE (ICR, Kyoto University, Japan)
PO-226	Minor-intron splicing is important for nutrient-dependent growth regulation in plants Kodai Ishibashi (Grad. Sch. Front. Sci., Univ. Tokyo)
PO-227	Depletion of Arabidopsis APPAN causes pleiotropic defects in rRNA processing Ilyeong Choi (Yonsei university, Korea)
PO-228	Dissecting the molecular mode of action of Restorer-of-Fertility-like proteins in plant mitochondria Sang Dang Huynh (ARC Centre of Excellence in Plant Energy Biology - School of Molecular Sciences, The University of Western Australia)
50.000	Interaction between polyadenylation and C-to-U editing of mitochondrial mRNA involved in
PO-229	cytochorome c maturation Akihito Mamiya (Dept. Biol. Sci., Grad. Sch. Sci., Univ. Tokyo) Suppression of the dwarf phenotype of acl5, a mutant defective in thermospermine biosynthesis by a
PO-230	single-base change in a uORF of SAC51 Yuichi Nishii (Okayama University, Japan)
PO-231	Role of pre-mRNA splicing in lateral root morphogenesis regulated by plastid signal Natsu Takayanagi (The University of Tokyo, Japan)
PO-232	A GWAS-driven CROSS-SPECIES APPROCH TOWARDS A SPLICING CODE Sureshkumar Balasubramanian (School of Biological Sciences, Monash University, VIC 3800, AUSTRALIA)
PO-233	Arabidopsis mRNA decay landscape shaped by XRN 5'-3' exoribonucleases Wan-Yin Han (Agricultural Biotechnology Research Center, Academia Sinica)
DO 004	Arabidopsis DXO1, a decapping enzyme for NAD-capped RNAs, activates RNMT1 to methylate the
PO-234 CC17	mRNA guanosine cap Chen Xiao (HongKong Baptist University, HongKong)
PO-235	Assessing global impact of alternative splicing using multi-omics strategy
10200	Andres Reyes (Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA.)
PO-236	NMD and translation of intergenic splicing-mediated polycistronic transcripts
CC12	Yukio Kurihara (The University of Tokyo, Japan)
PO-237	Structural feature and function of pre-tRNA splicing enzymes from Arabidopsis thaliana and rice Kazuhito Akama (Graduate School of Natural Science and Technology, Shimane University, Japan)
	Single-cell transcriptome map and distribution of mobile mRNAs in heterografted Arabidopsis
PO-238	thaliana in response to nutritional changes Yagmur Hasbioglu (Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany)
PO-239	Dose-dependent long-distance movement of microRNA399 duplex regulates phosphate homeostasis
CC31	in Arabidopsis Chih-Pin Chiang (Agricultural Biotechnology Research Center, Academia Sinica, Taiwan)
PO-240	The role of Arabidopsis Cold Shock Proteins in the regulation of RNA mobility
10210	Diego Pinheiro Brito (Max Planck Institute of Molecular Plant Physiology, Germany)
PO-241	The emergent complexity of systemic mRNA transport by m5C-methylation
DO 040	Ying Xu (Max Planck Institute of Molecular Plant Physiology)
PO-242 CC33	Insights into tRNA-like structures (TLS) as motifs facilitating long-distance transport of mRNAs
PO-243	Eleftheria Saplaoura (Max Planck Institute for Molecular Plant Physiology) The role of plant extracellular vesicles in mRNA intercellular trafficking
CC28	HUAN-CHI TIEN (Institute of Plant and Microbial biology, Academia Sinica)
PO-244	Expanding the horizons of plant RNA research using single molecule FISH
10211	Susan Duncan (John Innes Centre)
PO-245	Simultaneous detection of miRNA and mRNA at the single-cell level in plant tissues Wen-Hsiung Li (Academia Sinica)
	Transcripts with long or structured translated upstream open reading frames (uORFs) can escape
PO-246 Online-only	nonsense-mediated mRNA decay (NMD) in plants Orit Shaul (Bar-Ilan University, Israel)
	A defect in an RNA metabolic enzyme suppresses the adverse effect of the accumulation of
PO-247	polyadenylated mitochondrial mRNA in Arabidopsis.
Online-only	Takashi Hirayama (Okayama Univ. IPSR)
PO-248	Cell-type specific mRNA delivery in heterografted Arabidopsis revealed by single-cell transcriptomics
Online-only	Federico Apelt (Max Planck Institute of Molecular Plant Physiology, Germany)

08 Translation

PO-249	The phosphorylation of carboxyl-terminal elF2α by SPA kinases contributes to enhanced translation efficiency during photomorphogenesis Hui-Hsien Chang (National Taiwan University, Taiwan)
PO-250	Functional study of PHYTOCHROME INTERACTING FACTOR in the translational regulation during photomorphogenesis Wei Lin (Department of Biochemical Science & Technology, National Taiwan University)
PO-251	Dynamic phosphorylation of ribosomal protein S6A ensures the successful development of young Arabidopsis seedlings Yueh Cho (Institute of Plant and Microbial Biology, Academia Sinica, Taiwan)

Data as of 2023/4/22. "CC##" indicates the presentation being selected for a short talk in that session. Only the 1ry affiliation is shown per person. No italic, superscript, or subscript is reflected. Poster: page 10 of 30

PO-252	Role of G3BP1 in Plant Stress Granules
	Fatimah Abdulhakim (Biological and Environmental Sciences and Engineering, King Abdullah University o
	Science and Technology, Thuwal, Saudi Arabia)
	Functional characterization of the deubiquitinase OTU2 role in Arabidopsis thaliana stress granules
PO-253	biology.
	Violeta Londono Velez (Center for Desert Agriculture, Biological and Environmental Science and
	Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia)
PO-254	Deciphering the role of specialized ribosomes in plants' translation efficiency
CC12	Jose Antonio Duarte-Conde (Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Má
0012	laga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC))
	Linking cold induced variation in RPL7 paralog abundances to the emergence of specialized
PO-255	ribosomes
	Dione Gentry Torfer (Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany)
PO-256	Characterization of AtSQTL1, the Dedicated Chaperone of AtRPL10 in Arabidopsis Zhi Xing Lau (IPMB, Academia Sinica)
	Genome-wide identification of Arabidopsis non-AUG-initiated upstream ORFs with evolutionarily
PO-257	conserved regulatory sequences that control protein expression levels Yuta Hiragori (Graduate School of Agriculture, Hokkaido University)
	Modeling plant alternative translation initiation sites reveals evolutionarily conserved cis-regulatory
PO-258	codes in eukaryotes Ya-Ru Li (Biotechnology Center in Southern Taiwan, Academia Sinica, Taiwan)

09 Nutrition

PO-259	NLP7 is a central integrator of transcription networks in nitrogen signaling and drought stress
CC07	Jose M Alvarez (Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres
	Bello, Santiago 8370186, Chile)
PO-260	Nitrogen-responsive SnRK1-FBH4 module affects flowering time and metabolism in Arabidopsis
CC19	Miho Sanagi (Hokkaido University, Japan)
	Coregulation of glutamine synthetase1;2 (GLN1;2) and NADH-dependent glutamate synthase (GLT1)
PO-261	gene expression in Arabidopsis roots in response to ammonium supply Soichi Kojima (Tohoku University)
	Nitrate fluctuation impacts cytokinin biosynthesis through modification of IPT3 chromatin profiles in
PO-262	Arabidopsis roots.
	Fanny Bellegarde (Nagoya University, Nagoya, Japan)
	Histone chaperone NAP1 proteins are involved in plant growth under nitrogen deficient conditions in
PO-263	Arabidopsis thaliana
CC01	Jie Linnan (Hokkaido University)
DO 004	Elevated CO2 impairs Arabidopsis N nutrition through the inhibition of the root high-affinity nitrate
PO-264	uptake system
PO-265	Alain Gojon (IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France)
PU-200	Regulation of high-affinity nitrate uptake activity by NRT2.1 phosphorylation Yuri Ohkubo (Nagoya University, Japan)
	Role of potassium-dependent alternative splicing of MYB59 in maintenance of potassium
PO-266	concentration in shoots of Arabidopsis thaliana
	Sho Nishida (Faculty of Agriculture, Saga University, Japan)
	Glucosinolate catabolism maintains glucosinolate profiles and transport in sulfur-starved
PO-267	Arabidopsis
PO-268	Liu Zhang (Kyushu University, Japan) The Necessity of SLIM1 C-Terminal Region for Sulfur Deficiency Response
PO-200	Akiko Maruyama-Nakashita (Kyushu University, Japan)
PO-269	Plant iron nutrition: towards a new paradigm?
10-203	Christian DUBOS (IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France)
PO-270	FEP/IMA peptides are required for Fe regulation in vascular plants.
10210	Aleksandr Sorokin (Group of Environmental Stress Response Systems, Institute of Plant Science and
	Resources, Okayama University, Okayama, Japan)
PO-271	The Effect of Chromatin Remodeling on Iron Homeostasis
	Justin Su (Department of Biology, Amherst College, USA)
PO-272	Investigating the Biological Role of Ferroportin 3
	Jeeyon Jeong (Department of Biology, Amherst College, USA)
PO-273	Identification of Sorghum bicolor iron transporter gene using Arabidopsis gene knockout line.
	Ryoichi Araki (Wakayama University, Japan)
PO-274	A novel Arabidopsis uptake transporter of coumarin plays a crucial role in root Fe uptake
DO 075	Shunsuke WATANABE (IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, France)
PO-275	A FIT/WRKY complex modulates the biosynthesis of coumarins in response to environmental pH
	Jorge Enrique Salazar Henao (Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529,
	Taiwan)

PO-276	Coumarins delineate the cross-talk between manganese and iron uptake Yi-Hsiu Tsai (Institute of Plant Biology, National Taiwan University, Taiwan, R.O.C)
	Understanding the molecular mechanisms mediating the crosstalk between iron and sulfur networks
PO-277	in Arabidopsis.
	David Mendoza (University of Missouri)
	Global ribosome sequencing analysis of Arabidopsis mutant having mutation in a ribosomal protein
PO-278	uL13: boron-dependent growth change and expression of boron transporter genes Hirofumi Fukuda (Grad. Schl. Agr. Life Sci., Univ. Tokyo, Japan)
	Inhibition of TOR, a positive growth regulator, rescues root growth suppression under limited boron
PO-279	condition in Arabidopsis thaliana
	Ramita Jamornjureekul (Hokkaido University, Japan)
	Phosphorylation/Dephosphorylation-mediated Regulation of the Polar Localization of a Borate
PO-280	Transporter BOR1 in Arabidopsis thaliana
DO 291	Keita Muro (Osaka Metropolitan University, Japan)
PO-281	Functional Analysis of Arabidopsis Magnesium Ion Transporter AtMRS2-1
PO-282	Xiaoyu Yang (Graduate School of Agricultural and Life Sciences, The University of Tokyo) Defensin-like proteins induced by zinc deficiency are involved in Arabidopsis root elongation
F 0-202	Yoichiro Fukao (Ritsumeikan University)
	Starvation-induced transcriptional control: metabolic signals, transmission via the central metabolic
PO-283	kinase SnRK1 and downstream gene regulation
	Jan Draken (Julius-Maximilians-University Würzburg Department of Pharmaceutical Biology, Germany,
PO-284	The Arabidopsis ACR9 protein is a repressor of the glucose signaling pathways
	Hong-Sheng Liao (Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan)
	Functional analysis of IDD4, a transcription factor which regulates root growth through sugar
PO-285	signaling in early developmental stages
	Ryoichi Shiroma (Shizuoka University, Japan)
PO-286	Nutrient sensing in plants by O-GlcNAcylation and O-Fucosylation
	Shouling Xu (Carnegie Institution at Stanford)
50.007	bZIP1, 53 and 63 Transcription Factors are required in Starch Metabolism and Energy Homeostasis to
PO-287	maintain Vigorous Growth
	Raphael de Araújo Campos (University of Campinas) Mechanisms for phosphorylation and granule formation of a Raf-like kinase, PHOTOSYNTHESIS-
PO-288	
	RELATED RAF, in the liverwort Marchantia polymorpha Ryuichi Nishihama (Graduate School of Biostudies, Kyoto University, Japan)
PO-289	Extrachromosomal circular DNA in response to phosphate starvation in Arabidopsis
	Monica Rojas-Triana (Section of Ecology and Evolution, Department of Biology, University of
Online-only	Copenhagen)

10 Photosynthesis/Energy

PO-290	The Zinc-Finger Thylakoid-Membrane Protein FIP in involved in photosynthesis apparatus adaptation to changing light condition Maciej Jerzy Bernacki (Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland)
	The Role of NTRC, 2-Cys-Peroxiredoxins and thioredoxin f in photosynthesis in Arabidopsis thaliana
PO-291	when acclimated to different light conditions Louis Poeker (Ludwig-Maximilians-Universität München (LMU))
	Difference between leaf and single-plant photosynthesis of Arabidopsis thaliana under fluctuating
PO-292	light conditions Kazuma Sakoda (NTT Space Environment and Energy Laboratories)
	UV-B acclimation in Arabidopsis thaliana decreases the efficacy of the herbicide atrazine, which is
PO-293	mediated through the UVR8 signaling pathway Chris Groves (University of Bristol)
	The function of thylakoid membrane fusion by FZL protein in sustaining optimized photosynthetic
PO-294	electron transfer Yu Ogawa (Okayama University, Japan)
PO-295	The molecular mechanisms underlying floral organ photosynthesis Roisin Fattorini (University of Liverpool)
PO-296	Chloroplast functions in photoautotrophically cultured green cells of Arabidopsis
Online-only	Satomi Takeda (Graduate School of Science, Osaka Prefecture University)

11 Metabolism/Metabolome

PO-297	BrMYBR1, an R2R3 MYB transcription factor, directly inhibits anthocyanin biosynthesis in Chinese
	cabbage
	DaHye Kim (1Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National
	University)
PO-298	Multi-omics approach to elucidate the biosynthesis of diterpene alkaloids in Aconitum japonicum
	Megha Rai (Graduate School of Pharmaceutical Sciences, Chiba University)
	MHP1 and MHL generate odd-chain fatty acids from 2-hydroxy fatty acids in sphingolipids and are
PO-299	
FU-299	related to immunity in Arabidopsis thaliana
	Minoru Nagano (Ritsumeikan University, Japan)
PO-300	LIPID RICH 1 regulates the metabolic balance between triacylglycerols and starch in plastids of
	Arabidopsis thaliana
	Takashi L. Shimada (Graduate School of Horticulture, Chiba University)
PO-301	A pair of differentially localized lipid phosphate phosphatases mediate endoplasmic reticulum
	glycerolipid metabolism in Arabidopsis.
	Van Cam Nguyen (Plant lipid research team, RIKEN Center for Sustainable Resource Science (CSRS),
	RIKEN Yokohama)

12 Hormone synthesis

PO-302	Towards resolving the contribution of the IAOx pathway to auxin biosynthesis in Arabidopsis thaliana Mario Fenech-Torres (North Carolina State University)
PO-303	Isolation of interactors of Agrobacterium cytokinin synthase Tmr by Proximity Labeling method (PL method) Shuhei Komori (Nagoya University, Nagoya, Japan)
50.004	Uncovering Regulatory Mechanisms of Salicylic Acid Biosynthesis and plant systemic immunity in
PO-304	Brassicaceae species Heejin Yoo (Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078 USA)
PO-305	D27-like isomerases in Arabidopsis: at the crossroads of strigolactone and ABA biosynthesis? Vilmos Soos (Centre for Agricultural Research, Martonvásár, Hungary)
PO-306	Steps catalyzed by unknown enzymes in brassinosteroid biosynthesis. Rikuto Hamada (Utsunomiya Univ., Japan)
	Survey the tissue localization of brassinosteroid biosynthesis enzymes by using fluorescent labeled
PO-307	specific inhibitors combined with mutants of CYP90s Keimei Oh (Department of Biotechnology, Akita Prefectural University)
PO-308	Initiation of root Jasmonate biosynthesis Yunjing Ma (Martin Luther University Halle-Wittenberg)
PO-309	Genetic analysis of β-carotene isomerase genes in Arabidopsis Hitomi Kobuna (Utsunomiya Univ., Japan)
PO-310	Strigolactone biosynthesis in Arabidopsis and bryophytes Kozue Hiugano (Utsunomiya Univ., Japan)
PO-311	Genetic mutant analysis of Arabidopsis CYP707As, which encode key enzymes for ABA catabolism Masanori Okamoto (Utsunomiya Univ., Japan)
	Knockout of an ER-localized HSP90 family protein impairs seedling development and cellular auxin
PO-312	homeostasis in Arabidopsis
Online-only	Rongmin Zhao (University of Toronto)

13 Hormone signaling

PO-313	An activity of phytoene desaturase negatively regulates auxin biosynthesis and signaling KANG XU (Grad. Sch. Life., Univ. Hokkaido)
	PIN-Interacting Protein 1 (PIP1), a phospho-lipid modifier, modulates PINs' intracellular trafficking in
PO-314	Arabidopsis
	KWANG HO MAENG MAENG (Department of Biological Sciences, Seoul National University)
	Genetic analysis of the TGN-localized membrane trafficking factor Sec1/Munc18 protein BEN2/VPS45
PO-315	in Arabidopsis development
	Kosuke Ogita (Life Sciences Program, Graduated School of Agriculture, Meiji University)
	SYP4 Qa-SNARE proteins redundantly regulate auxin distribution and root development in
PO-316	Arabidopsis
	Hirokazu Tanaka (Life Sciences Program, Graduate School of Agriculture, Meiji University)
PO-317	Physiological studies on the auxinic regulation of hydrotropism in Arabidopsis thaliana
	Kotaro Akita (Yamagata University, Japan)
	An intronic enhancer directs stomatal lineage and epidermal-specific expression of PIN-FORMED 3
PO-318	(PIN3) in Arabidopsis
	ZIMIN ZHOU (National University of Singapore)

2023

The 33rd International Conference on Arabidopsis Research

PO-319	Auxin-sensitive autonomous bioluminescence to visualize auxin in near-to-nature conditions Michael Karampelias (Laboratory of Plant Hormonal Regulations in Plants, Institute of Experimental Botany, Prague, Czech Republic)
PO-320	ABP1-likes and TMKs are co-receptors for extracellular auxin in plants Tongda Xu (Fujian Agriculture and Forestry University, Fuzhou, Fujian, China)
PO-321	A phosphoinositide hub connects CLE peptide signaling and polar auxin efflux regulation
CC26	Qian Wang (Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland)
PO-322	MAJOR LATEX PROTEINs affect auxin signaling Michael Liebthal (Chair of Botany, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany)
	Characterization of the BIMP family in Arabidopsis thaliana as a link between brassinosteroid
PO-323	signaling and cortical microtubules in plant growth Charlotte Delesalle (Laboratoire de Recherche en Sciences Végétales, University of Toulouse, France)
PO-324	A signaling circuit maintains cell integrity during hormone induced cell expansion Ajeet Chaudhary (Department of Plant biology, Carnegie Science Stanford)
PO-325	Brassinosteroid receptor BRI1 deubiquitination by UBP12/UBP13 fine-tunes plant growth
CC32	Yongming Luo (Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium) Ectopic expression of a corepressor OsTPR1 in Arabidopsis to dissect the crosstalk between GA and
PO-326	JA signaling pathways Shing Lon Ho (Department of Agronomy, National Chiayi University, Taiwan)
	Chemical biology study of jasmonate signaling by development of a biased agonist derived from
PO-327 CC27	stereoisomers of coronatine Kengo Hayashi (Graduate School of Science, Tohoku University, Japan)
0021	Mode of action of a novel putative plant defense activator that induces the accumulation of both
PO-328	jasmonic acid and salicylic acid in Arabidopsis Kazuyuki Kuchitsu (Tokyo University of Science, Japan)
	Transcriptome landscape under combinations of Salicylic Acid and Jasmonic Acid in various
PO-329	concentrations
	Atsuki Tomita (Dept. Environment & Info. Studies., Keio Univ.)
	The carboxy terminal transmembrane domain of SPL7 mediates interaction with RAN1 at the
PO-330	endoplasmic reticulum to regulate ethylene signalling in Arabidopsis Yanzhi YANG (Peking University)
	Significance of EIN2 Phosphorylation Status to EIN2 Stability and CTR1-independent Ethylene
PO-331	Signaling
PO-332	HangWei Zhao (CAS Center for Excellence in Molecular Plant Sciences)
FU-332	The miRNA156/SPL9 module controls apical hook development via auxin responses Flaviani Gabriela Pierdona (University of Sao Paulo)
PO-333	Dissecting apical hook development with small molecules
10000	Kai Jiang (Southern University of Science and Technology)
PO-334	More than just ABA receptors: Ligand spectrum of RCARs from Arabidopsis and Marchantia Isabel Doch (Chair of Botany, TUM School of Life Sciences Weihenstephan, Technical University Munich,
	Freising, Germany)
PO-335	Isolation of an Arabidopsis mutant involved in abscisic acid-independent stomatal closure Satoko Nakae (Dept. Biol., Fac. Sci., Univ. Kyushu)
PO-336	Guard-cell expression of abscisic acid receptors for engineering water efficient-productive plants
	Zhenyu Yang (Department of Botany, Technical University of Munich, Germany)
	bHLH transcription factor AKSs mediate ABA-dependent down regulation of gene expression in
PO-337	guard cells and seedlings
	Yuki Hayashi (Division of Biological Science, Graduate School of Science, Nagoya University)
DO 330	Structure-guided engineering of a receptor-agonist pair for inducible activation of the ABA adaptive
PO-338	response to drought
	Jorge Lozano-Juste (Instituto de Biologia Molecular y Celular de Plantas (IBMCP-UPV-CSIC)) Integrating multi-omics data reveals energy and stress signaling activated by abscisic acid in
PO-339	Arabidopsis
10-333	Takuya Yoshida (Lehrstuhl für Botanik, Technische Universität München, Germany)
PO-340	Functional analysis of DOG1-dependent ABA signaling cascade
	Noriyuki Nishimura (National Agriculture and Food Research Organization, Japan)
PO-341	The evolution of ABA receptors: Transition to hormone-regulated signaling.
	Assaf Mosquna (the Hebrew University of Jerusalem)
PO-342	Phosphoproteomic analysis of Arabidopsis guard cells for screening of SnRK2 substrates Kota Yamashita (BASE, Tokyo Univ. Agric. Tech.)
PO-343	Abscisic acid and G-protein regulated redox proteome of Arabidopsis Sona Pandey (Donald Danforth Plant Science Center, St. Louis, MO USA 63132)
PO-344	Characterization of the PEAPOD Jas domain to understand their interaction partner specificity
	Michele Schneider (Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium)

The 33rd International Conference on Arabidopsis Research

14 Organelles/Membranes

PO-345	Analysis of a nuclear lamina protein CRWN and its interacting proteins Sachihiro Matsunaga (Graduate School of Frontier Sciences, The University of Tokyo, Japan)
	The nuclear pore complex is involved in the two-step regulation of centromere arrangement in
PO-346	Arabidopsis thaliana
	Nanami Ito (Dept. of Integr. Biosci., Grad. Sch. of Front. Sci., Univ. of Tokyo, Japan)
PO-347	Light-dependent nuclear relocation in land plants: differences and similarities between Arabidopsis thaliana and the liverwort Marchantia polymorpha
10041	Ikuko Hara-Nishimura (Konan Univ.)
	A pair of phosphoinositide-binding proteins act downstream of the IRE1-bZIP60 pathway and
PO-348	function redundantly in the unfolded protein response Chao-Yuan Yu (RIKEN Center for Sustainable Resource Science, Yokohama, Japan)
	Localization dynamics of BGLU18, a β-glucosidase that releases ABA from its glucose conjugates, in
PO-349	Arabidopsis leaf cells under dehydration stress
	Yutong Song (Graduate School of Integrated Sciences for Life, Hiroshima University, Japan)
PO-350	Endoplasmic reticulum body in the lateral root cap: Visualization of direct transport of β -glucosidase to the vacuole by correlative light and electron microscopy
	Kiminori Toyooka (RIKEN Center for Sustainable Resource Science)
	MAIGO3-dependent mechanism underlying dynamic capture-and-release process of ER exit sites by
PO-351	Golgi stacks in Arabidopsis Junpei Takagi (Fac. Sci. and Grad. Sch. Life Sci., Hokkaido Univ., Japan)
	Nanobody-epitope interaction-based intracellular in vivo immunotracing reveals the bidirectional
PO-352	trafficking of vacuolar sorting receptors
PO-353	Peter Pimpl (Southern University of Science and Technology (SUSTech)) Elucidating the final stages of plant Clathrin-Mediated Endocytosis in vivo and in vitro
FO-333	Nataliia Gnyliukh (Institute of Science and Technology Austria (ISTA))
	Subcellular localization of NPR1 shifts between chloroplast and nucleus in accordance with the
PO-354	circadian rhythm
	So Yeon Seo (Sunchon national university) Location, location, location: a system-wide assessment of subcellular protein localization in
PO-355	Arabidopsis roots by mass-spectrometry
CC03	Monique van Schie (Wageningen University, the Netherlands)
PO-356	The role of DGK1 and DGK2 in Membrane Contact Sites and Stress Tolerance Selene Garcia-Hernandez (Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Má
CC18	laga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC))
50.055	Fuctional characterization of Arabidopsis thaliana Synaptotagmin1 domains using Tricalbin3
PO-357	chimeras in Saccharomyces cerevisiae. Francisco Benitez-Fuente (Departamento de Biologia Molecular y Bioquimica, Instituto de Hortofruticultura
CC05	Subtropical y Mediterranea "La Mayora", Universidad de Malaga-CSIC, Malaga 29071, Spain,
	405nm Photostimulation of the Endoplasmic Reticulum-Chloroplast Contact Site in Arabidopsis
PO-358	Hypocotyls Causes Rapid Cytoskeletal Depolymerization, Elevated Cytoplasmic Calcium, and Elevated Organellar ROS
CC05	Sara Maynard (Texas A&M University)
	SEED LIPID DROPLET PROTEIN 1 and 2 and LD-PLASMA MEMBRANE ADAPTOR form a lipid droplet-
PO-359 CC18	plasma membrane contact site that might play a role under stress Janis Dabisch (Uni Münster)
PO-360	Balanced activities of chloroplasts and mitochondria is crucial for optimal plant growth
	Boon Leong Lim (The University of Hong Kong)
PO-361	Defining and dissecting mitochondrial specific stress signalling pathways in Arabidopsis thaliana Cunman He (College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China.)
	The ANAC017 transcription factor links transcriptional and post-translational regulation of
PO-362	mitochondrial biogenesis and signalling.
	James Whelan Whelan (Zhejiang University, China) Overexpression of the transcription factor ANAC017 results in a genomes uncoupled phenotype
PO-363	under lincomycin
	Yanqiao Zhu (College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China,
PO-364	An isoform of the plastid RNA polymerase-associated protein FSD3 affects chloroplast development
	Geupil Jang (The National Academy of Sciences, Republic of Korea) Analysis for the molecular mechanism of chloroplast development via BPGs, novel brasinosteroid
PO-365	signaling factors
	Ryo Tachibana (Kyoto University, Japan)
PO-366 CC02	Sensory plastids in growth- and defense-related epigenetic phenotype adjustment Ha Eun Jeh (Pennsylvania State University, PA, USA)
PO-367	Comparative transcriptomic analysis to characterize Stromule Regulatory Genes
	Jongchan Woo (University of Wyoming)
PO-368	Light-induced chloroplast biogenesis: photobodies control alternative promoter selection as a mechanism of nucleus-chloroplast communication
CC05	Chan Yul Yoo (School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA)

	Nanotechnology research in Arabidopsis for developing precision agriculture and plant
PO-369	biomanufacturing tools
	Juan Pablo Giraldo (University of California, Riverside)
PO-370	Fluorescent staining of the chloroplast outer envelope membrane in living plant cells
	Shintaro Ichikawa (Utsunomiya University, Japan)
	Linkage between ADP-ribosylation and chloroplast stress response under thylakoid proteostasis
PO-371	perturbation Kenji Nishimura (Kwansei Gakuin University, Japan)
PO-372	Molecular mechanism for peroxisomal protein transport via the ubiquitin system
CC06	Shoji Mano (National Institute for Basic Biology, Japan)
	A tonoplast-localized magnesium transporter is crucial for stomatal opening in Arabidopsis under
PO-373	high Mg2+condition
	Shin-ichiro Inoue (Nagoya University, Japan)
	IntEResting: RHD3 and RTN3/4 Oppose in ER network connectivity but cooperate in ER-phagy in
PO-374	response to environmental stresses Huanquan Zheng (McGill University)
	An Arabidopsis Rab GTPase regulates ER association of ATG18a to promote ER-phagy in response
PO-375	to carbon starvation Jiagi Sun (Shandong University, China)
	KNO1-mediated autophagic degradation of the Bloom syndrome complex component RMI1 promotes
PO-376	homologous recombination
	Poyu Chen (Kanazawa University, School of Biological Science and Technology)
PO-377	Dissecting the plant ATG9 vesicle trafficking in autophagy pathway KA KIT CHUNG (Centre for Cell & Developmental Biology and State Key Laboratory of
	Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China)
PO-378	A novel reciprocal regulation mechanism for SH3P2 in crosstalk between endocytosis and autophagy
	Kai Ching Law (The Chinese University of Hong Kong, Hong Kong China)
	Chloroplast chaperone HSP90C C-terminal extension regulates client binding and plant stress
PO-379	resilience
Online-only	Bona Mu (University of Toronto, Scarborough)

DO 000	Arabidopsis MPK6 Phosphorylates MAP18 to Mediate Root Growth Control in Response to Salt
PO-380	Stress
	Ying Fu (China Agricultural University, China)
PO-381	Microtubule-dependent phase separation tunes cell wall spacing in xylem vessels
PO-382	Yoshihisa Oda (The University of Tokyo, Japan)
PO-302	NIMA-related protein kinases regulate microtubule response to tensile stress in Arabidopsis thaliana Yumeko Nomura (Department of Biological Science, Faculty of Science, Okayama University, Japan)
	Elucidating molecular mechanisms of anchoring complexes that stabilize the association of daughter
PO-383	microtubule minus end to their nucleation sites
	Masayoshi Nakamura (Nagoya University, Japan)
PO-384	Enzymatic activities and tissue-specific expression of Arabidopsis thaliana class XI and VIII myosins
	Shizuha Ito (Department of Biology, Graduate School of Science, Chiba University, Japan)
PO-385	GraFT - Robust spatiotemporal filament disentanglement using a network theoretic framework
	Isabella Østerlund (Department of Plant and Environmental Sciences, University of Copenhagen, 1871
	Frederiksberg C, Denmark)
PO-386	Structure and regulation of Arabidopsis Myosin XI, MYA2
	Takeshi Haraguchi (Department of Biology, Graduate School of Science, Chiba University, Japan)
	Functional Differentiation among the lipid signaling producing Genes PIP5K1, PIP5K2, and PIP5K3 in
PO-387	Arabidopsis
	Machiko Watari (Institute for Chemical Research, Kyoto university, Japan)
PO-388	Molecular mechanisms underlying rapid cell growth in the root epidermis
	Hirotomo Takatsuka (Kanazawa University, Japan)
PO-389	Evolution of RHO cell polarity signalling in plants
	Hugh Mulvey (Gregor Mendel Institute (GMI), Austria)
PO-390	Mechanisms underlying polar membrane targeting of SOSEKI protein
CC32	Andriy Volkov (Laboratory of Biochemistry, Wageningen University, Netherlands)

16 Cell walls

PO-391	Mutations in Golgi-localised proton pyrophosphatase, AVP2;1 enhances root growth under limited
	boron supply by changes in cell wall stability
	Amarachukwu Faith ONUH (Hokkaido University, Japan)
PO-392	Analysis of regulatory mechanisms of cell wall construction during fruit morphological changes
	under calcium deficiency conditions in Tomato (Solanum lycopersicum) cv. 'Micro Tom' Kiei Soyama (Graduate School of Science and Technology, University of Tsukuba, Japan)

2023

The 33rd International Conference on Arabidopsis Research

PO-393	Hormone-regulated expansins localization and their putative role in cell wall biomechanics controlling the Arabidopsis root growth
50.004	Marketa Samalova (Masaryk University, Czech Republic)
PO-394	TMK-based cell-surface auxin signalling activates cell-wall acidification Wenwei Lin (Fujian Agriculture and Forestry University)
PO-395	Contribution of Epidermis and Vasculature to the Mechanical Integrity of Arabidopsis Inflorescence Stem
	Mariko Asaoka (Tokyo Gakugei University, Tokyo, Japan)
PO-396	Transcriptional Control of Hypocotyl Cell Elongation by SHORT-ROOT
	Jun Lim (Dept. of Systems Biotechnology, Konkuk University, Seoul 05029, Korea)
	CALCIUM-DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post-
PO-397	translational modification of cellulose synthase Ying Gu (Pennsylvania State University)
PO-398	A cell wall-modifying gene-dependent CLE peptide transport in conferring drought resistance
CC14	Satoshi Endo (Kyoto Univ. Adv. Sci., Japan)
	Periodicity and disorder in protoxylem secondary cell wall of Arabidopsis is orchestrated by an ABA-
PO-399	ROP11 toggle switch
	Shaul Yalovsky (School of Plant Sciences and Food Security, Tel Aviv University)
DO 100	Proper synthesis of Secondary Cell Wall in Arabidopsis requires regulation by copper-miRNAs and
PO-400	the miRNA-processing protein Dicer-like 1
	Alessandro Giannetti (University of Copenhagen) Cloning and Functional Analyses of SET Gene Whose Loss-of-Function Suppresses de-etiolatedt3-1
PO-401	Inflorescence Stem Dwarfism
FO-401	Shizuka Gunji (Department of Biology, Tokyo Gakugei University)
	An Evolutionarily Conserved Long-distance Migrating Peptide Regulates Lignin Biosynthesis
PO-402	Pathway and Plant Immunity
	Ying-Lan Chen (Department of Biotechnology and Bioindustry Sciences, College of Bioscience and
CC14	Biotechnology, National Cheng Kung University, Tainan, Taiwan)
PO-403	Elucidating the role of lignification during silique development in Arabidopsis thaliana
	Justin Nichol (University of Calgary)
PO-404	Redox partner preference of monolignol cytochrome P450 monooxygenases C4H and F5H
Online-only	Xianhai Zhao (Brookhaven National Laboratory)
17 Symr	plasmic signaling/Plasmodesmata
PO-405	Changes in plasmodesmal stress responses across development Emma C. Raven (John Innes Centre, Norwich, United Kingdom)
PO-406	Reaction Without Diffusion: Role Of Plasmodesmata in Floral Pigmentation Patterning Steven Harmon-Jarsen (University of Connecticut)
PO-407	The primary PD density is reduced in brood cells of the moss Physcomitrium patens Chiyo Jinno (Hokkaido University, Japan)
PO-408	A novel mechanism for plasmodesmata mediated cell-cell communication in plants
CC20	Marija Smokvarska (Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux,
	Villenave d'Ornon, France)
PO-409	AGP polysaccharide chains are required for normal biogenesis of plasmodesmata

		Mari Ohnishi Ogawa (Nagoya university)
PO-	-410	Exploring the intercellular plasmodesmal protein transport in Marchantia polymorpha
		Kuan-Ju Lu (Graduate Institute of Biochemistry, National Chung Hsing University)
		Investigating the role of the Arabidopsis ROTAMASE CYCLOPHILIN gene family in organelle-
PO-	-411	mediated mobile mRNAs transport
CC	31	Yu-Hsien Chang (Institute of Plant and Microbial Biology, Academia Sinica, Taiwan)
		A cell wall-modifying enzyme controls symplastic movement of RNA silencing in aerial Arabidopsis
PO-	-412	tissues
CC	31	Florence Brioudes (Swiss Federal Institute of Technology (ETH-Zürich), Switzerland)
PO-	-413	Arabidopsis cyclophilins direct intracellular transport of mobile mRNA via organelle hitchhiking
		Tien-Shin Yu (Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan)

18 Circadian & biotic rhythms

	Weather-dependent flower movement: the functions and mechanisms for downward-facing of flowers
PO-414	during rain Akari Shibata (Kyoto university, Japan)
PO-415	Microfocus X-ray CT Analysis of Arabidopsis Petioles for Leaf Movement
CC29	Maika Hayashi (NAIST, Japan)
	CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) controls resistance to aphid by altering indole
PO-416	glucosinolate production
CC21	Keyan Zhu Salzman (Texas A&M University)
PO-417	Association of NPR1 with ROS and ethylene signaling pathways in relation to the circadian rhythm
	Yumi Kim (Sunchon national university)

PO-418	Circadian-period variation underlies the local adaptation of photoperiodism Tomoaki Muranaka (Nagoya University, Japan)
PO-419	Identifying E3 ubiquitin ligases interacting with Arabidopsis circadian clock regulators
DO 400	Chen-An Chen (Institute of Plant Biology, National Taiwan University, Taipei, Taiwan)
PO-420	The essential role of TOC1 phosphorylation in selective circadian clock gene regulation David Somers (Ohio State University, USA)
	Quantity regulation of TOC1 and PRR5 for temperature compensation in the Arabidopsis circadian
PO-421	clock
CC08	Akari Maeda (Nagoya university, Japan)
PO-422	Circadian rhythms under controlling light irradiation in accordance with lunar rhythm. Naoki Seki (Toyota Boshoku Corporation)
PO-423	Long-distance circadian coordination via a phloem-delivered mobile transcript
CC29	András Székely (Max Planck Institute of Molecular Plant Physiology)
	Imaging and functional analysis of 24-h rhythmic interactions of circadian core oscillators in
PO-424	Arabidopsis
	Xiaodong Xu (Henan University, China)
PO-425	BIG regulates the circadian clock and development
10420	Dora Luz Cano Ramirez (Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge
DO 100	CB2 1LR, UK)
PO-426	Role of the Arabidopsis AtbZIP63 transcription factor stability in energy management
CC07	Pamela Carlson (University of Campinas)
	Assessing the impacts of genetic defects on starch metabolism in Arabidopsis plants using the
PO-427	carbon homeostasis model
CC23	Shuichi Kudo (Kyushu Univ., Japan)
PO-428	ROS around the clock: Superoxide as a metabolic signal affecting circadian rhythms and growth
	Mike Haydon (University of Melbourne)
	Comparing circadian activity of CAM plant Kalanchoë laxiflora promoters in their native environment
PO-429	
1 0-423	and in the C3 Arabidopsis thaliana
DO 100	Jessica Harding Pritchard (University of Liverpool)
PO-430	Multiple uORFs-mediated Light-dependent Translational Repression in the Arabidopsis Clock Gene
	Haruka Aoyama (Graduate School of Life Science, Hokkaido University, Japan)
PO-431	Identification of LWD1-interacting proteins reveals novel regulators for Arabidopsis circadian clock
CC29	Chun-Kai Huang (Institute of Plant and Microbial Biology, Academia Sinica, Taiwan, ROC)
PO-432	Investigating the circadian regulation of TAG biosynthesis in nitrogen-starved Arabidopsis seedlings
Online-only	Kristen Edgeworth Edgeworth (Washington University in St. Louis)
401114	
19 Light	signaling
19 Light	
19 Light PO-433	Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition
	Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation
	Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China)
PO-433	Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red
	Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light
PO-433 PO-434	Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences)
PO-433	Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis
PO-433 PO-434	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University)
PO-433 PO-434 PO-435	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling
PO-433 PO-434	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis
PO-433 PO-434 PO-435	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling
PO-433 PO-434 PO-435	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis
PO-433 PO-434 PO-435	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India)
PO-433 PO-434 PO-435 PO-436	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in
PO-433 PO-434 PO-435	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana
PO-433 PO-434 PO-435 PO-436 PO-437	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center)
PO-433 PO-434 PO-435 PO-436	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant
PO-433 PO-434 PO-435 PO-436 PO-437	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan)
PO-433 PO-434 PO-435 PO-436 PO-437 PO-438	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane
PO-433 PO-434 PO-435 PO-436 PO-437	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane H+-ATPase is crucial for light-induced stomatal opening
PO-433 PO-434 PO-435 PO-436 PO-437 PO-438	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane
PO-433 PO-434 PO-435 PO-436 PO-437 PO-438	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane H+-ATPase is crucial for light-induced stomatal opening
PO-433 PO-434 PO-435 PO-436 PO-437 PO-438	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane H+-ATPase is crucial for light-induced stomatal opening Saashia Fuji (Department of Biology, Graduate School of Sciences and Technology for Innovation,
PO-433 PO-434 PO-435 PO-436 PO-437 PO-438 PO-439	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane H+-ATPase is crucial for light-induced stomatal opening Saashia Fuji (Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan)
PO-433 PO-434 PO-435 PO-436 PO-437 PO-438 PO-439	Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane H+-ATPase is crucial for light-induced stomatal opening Saashia Fuji (Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan) Characterization of blue light-induced phosphorylation and dephosphorylation in guard cells. Kohei Fukatsu (Devision of Biological Science, Nagoya University, Japan)
PO-433 PO-434 PO-435 PO-436 PO-437 PO-438 PO-439	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane H+-ATPase is crucial for light-induced stomatal opening Saashia Fuji (Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaquchi University, Japan) Characterization of blue light-induced phosphorylation and dephosphorylation in guard cells. Kohei Fukatsu (Devision of Biological Science, Nagoya University, Japan) Phosphorylation of WD-repeat protein WDR by phototropins is essential for starch degradation to
PO-433 PO-434 PO-435 PO-436 PO-437 PO-437 PO-438 PO-439 PO-440 PO-441	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane H+-ATPase is crucial for light-induced stomatal opening Saashia Fuji (Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaquchi University, Japan) Characterization of blue light-induced phosphorylation and dephosphorylation in guard cells. Kohei Fukatsu (Devision of Biological Science, Nagoya University, Japan) Phosphorylation of WD-repeat protein WDR by phototropins is essential for starch degradation to promote stomatal opening
PO-433 PO-434 PO-435 PO-436 PO-437 PO-438 PO-439 PO-440	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane H+-ATPase is crucial for light-induced stomatal opening Saashia Fuji (Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaquchi University, Japan) Phosphorylation of blue light-induced phosphorylation and dephosphorylation in guard cells. Kohei Fukatsu (Devision of Biological Science, Nagoya University, Japan) Phosphorylation of WD-repeat protein WDR by phototropins is essential for starch degradation to promote stomatal opening Shota Yamauchi (Department of Biology, Graduate School of Sciences and Technology for Innovation,
PO-433 PO-434 PO-435 PO-435 PO-436 PO-437 PO-437 PO-438 PO-439 PO-440 PO-441 CC09	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3X27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane H+-ATPase is crucial for light-induced stomatal opening Saashia Fuji (Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaquchi University, Japan) Phosphorylation of WD-repeat protein WDR by phototropins is essential for starch degradation to promote stomatal opening Shota Yamauchi (Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaquchi University, Yamaquchi, Japan)
PO-433 PO-434 PO-435 PO-436 PO-437 PO-437 PO-438 PO-439 PO-440 PO-441	Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane H+-ATPase is crucial for light-induced stomatal opening Saashia Fuji (Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaquchi University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane H+-ATPase is crucial for light-induced phosphorylation and dephosphorylation in guard cells. Kohei Fukatsu (Devision of Biology, Graduate School of Sciences and Technology for Innovation, Yamaquchi University, Japan) Phosphorylation of WD-repeat protein WDR by phototropins is essential for starch degradation to promote stomatal opening Shota Yamauchi (Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaquchi University, Yamaquchi, Japan)
PO-433 PO-434 PO-435 PO-435 PO-436 PO-437 PO-437 PO-438 PO-439 PO-440 PO-441 CC09	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane H+-ATPase is crucial for light-induced stomatal opening Saashia Fuji (Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan) Phosphorylation of blue light-induced phosphorylation and dephosphorylation in guard cells. Kohei Fukatsu (Devision of Biological Science, Nagoya University, Japan) Phosphorylation of biological Science, Nagoya University, Japan) Phosphorylation of biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan) Phosphorylation of biology, Graduate School of Sciences and Technology for Innovation, Y
PO-433 PO-434 PO-435 PO-435 PO-436 PO-437 PO-437 PO-438 PO-439 PO-440 PO-441 cC09 PO-442	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the -terminal auto-inhibitory domain of plasma membrane H+-ATPase is crucial for light-induced phosphorylation and dephosphorylation in guard cells. Kohei Fukatsu (Devision of Biological Science, Nagoya University, Japan) Phosphorylation of WD-repeat protein WDR by phototropins is essential for starch degradation to promote stomatal opening Shota Yamauchi (Devision of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan) Phosphorylation of WD-repeat protein WDR by phototropins is essential for starch degradation to promote stomatal opening Shota Yamauchi (Graduate School of Science, Nagoya, University, Japan) Phosphorylation of a protein of Biology, Gra
PO-433 PO-434 PO-435 PO-435 PO-436 PO-437 PO-437 PO-438 PO-439 PO-440 PO-441 CC09	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahas (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane H+-ATPase is crucial for light-induced stomatal opening Saashia Fuji (Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaquchi University, Japan) Phosphorylation of WD-repeat protein WDR by photoropins is essential for starch degradation to promote stomatal opening Shota Yamauchi (Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaquchi University, Yamaquchi, Japan) Functional analysis of novel compounds that inhibit stomatal opening Shota Yamauchi (Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaquchi University, Yamaquchi, Japan) Functional analysis of novel compounds that inhibit stomatal opening Mwang Chul Shin (Graduate School o
PO-433 PO-434 PO-435 PO-435 PO-436 PO-437 PO-437 PO-438 PO-439 PO-440 PO-441 cC09 PO-442	 Light-induced SUMOylation of NF-YC3 regulates stepwise histone modification switch for inhibition of hypocotyl elongation Jun Xiao (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, P.R.China) Dynamic H3K27me3 regulatory mechanism mediated by histone demethylase REF6 responding to red light Yan Yan (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) Understanding the role of DNA-DNA interactions in regulating de-etiolation in Arabidopsis Laila Dabab Nahasa (Durham University) Complex genetic interactions among MYC transcription factors underlie seedling photomorphogenesis in Arabidopsis Vikas Garhwal (Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India) Investigation of PCH1 in promoting liquid-liquid phase separation of photoreceptor photobodies in Arabidopsis thaliana Sarah Pardi (Donald Danforth Plant Science Center) Phenotypic analysis in suppressors of phototropin double mutant Taku Sakakibara (Nagoya University, Japan) Phosphorylation of two Thr residues in the C-terminal auto-inhibitory domain of plasma membrane H+-ATPase is crucial for light-induced shomatal opening Saashia Fuji (Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan) Phosphorylation of WD-repeat protein WDR by phototropins is essential for starch degradation to promote stomatal opening Shota Yamauchi (Devision of Biological Science, Nagoya University, Japan) Phosphorylation of WD-repeat protein WDR by phototropins is essential for starch degradation to promote stomatal opening Shota Yamauchi (Devision of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan) Phosphorylation

Data as of 2023/4/22. "CC##" indicates the presentation being selected for a short talk in that session. Only the 1ry affiliation is shown per person. No italic, superscript, or subscript is reflected. Poster: page 18 of 30

20 Flowering/Growth phase transition Changes in daily temperature control the expression patterns of FT to optimize flowering time in PO-444 nature Akane Kubota (Nara Institute of Science and Technology) PO-445 The role of AtDRIFs in the promotion of flowering under long days Ana Cunha (University of Minho) PO-446 A cryptic role of BASIC PENTACYSTEINEs in the temporal development of Arabidopsis Huang-Lung Tsai (Institute of Molecular and Cellular Biology, National Taiwan University, Taiwan) A B-Box protein suppresses flowering in Arabidopsis through multi-level regulation of the PO-447 photoperiod pathway Rahul Puthan Valappil (Plant Cell and Developmental Biology Laboratory, Indian Institute of Science CC07 Education and Research (IISER) Bhopal, Madhya Pradesh - 462066, India) PO-448 Arabidopsis MAC3A and MAC3B integrates environmental signals in modulating flowering time Yu-Wen Huang (Institute of Plant Biology, National Taiwan University, Taiwan) PO-449 A study on the florigen transport mechanisms around the shoot apical meristem in Arabidopsis Yusuke Murata (Graduate School of Arts and Sciences, The University of Tokyo) PO-450 Multilevel interactions of drought signals with the floral genes network Lucio Conti (University of Milan, Italy) Beyond FD: the bZIP AREB3 mediates FT signalling and floral transition at the Arabidopsis shoot PO-451 apical meristem Damiano Martignago (University of Milan) For identification of factors on early flowering in ddm1 mutant of C24 accession in Arabidopsis PO-452 thaliana KOHEI KUNITA (Kobe University, Japan) Arabidopsis EAF6 is part of the NuA4 Histone Acetyl Transferase complex and participates in plant PO-453 developmental control Manuel Piñeiro (Centro de Biotecnología y Genómica de Plantas (CBGP; UPM-INIA/CSIC)) Unraveling the role of INHIBITOR OF GROWTH FACTOR (ING) proteins in the regulation of flowering PO-454 time in Arabidopsis Jose Antonio Jarillo (Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madria

	(UPM) – Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid
	WRKY63 transcriptional activation of COOLAIR and COLDAIR regulates vernalization-induced
PO-455	flowering

Kegiang Wu	(Institute of	Plant Biology,	National	Taiwan Universit	V)

PO-456 Erasure of Epigenetic Memory in Arabidopsis Flowering Control

- CC16 Toshiro Ito (Nara Institute of Science and Technology)
- CBFs have a function to directly activate the expression of COOLAIR, an antisense RNA of FLC, PO-457 during vernalization Ilha Lee (Seoul National University)
- Retrotransposon-induced epigenetic regulation of FLC accelerates Arabidopsis life cycling in PO-458 response to herbicide
- Leandro Quadrana Quadrana (Institute of Plant Sciences Paris-Saclay, CNRS) PO-459
 - An Arabidopsis nucleoporin acts as a regulator for photoperiodic flowering Jae-Hyeok Park (Division of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do 54896, Republic of Korea)
- Mutual repression of AP2 and SOC1 couples changes in shoot apical meristem morphology with PO-460 floral transition in Arabidopsis
- Enric Bertran Garcia de Olalla (Max Planck Institute for Plant Breeding Research, Germany) The size of the Arabidopsis inflorescence meristem and stem is regulated in response to photoperiod PO-461

by the bZIP transcription factor bZIP13

- Vitor da Silveira Falavigna (Max Planck Institute for Plant Breeding Research) TWAS coupled with eQTL analysis reveals the genetic connection between gene expression and PO-462 flowering time in Arabidopsis Tzyy-Jen Chiou (Academia Sinica, Taiwan)
- Insights into polycarpic plant development through natural variation in longevity phenotypes in PO-463 Arabidopsis thaliana Thalia Luden (Universiteit Leiden, the Netherlands)
- CRISPR/Cas9-mediated genomic editing of crucial gene regulating flowering time in lettuce (Lactuca PO-464 sativa L.)
- Young jae YUN (Jeonbuk national university) TERMINAL FLOWER 1, a FT homolog interacts with FD in shoot apical meristem during floral PO-465 transition
- Momoka Maeno (The University of Tokyo) Transcriptional repression of FLOWERING LOCUS C by LUMINIDEPENDENS involved in the PO-466 autonomous pathway for flowering Daesong Jeong (Seoul National University)
- Data as of 2023/4/22. "CC##" indicates the presentation being selected for a short talk in that session. Only the 1ry affiliation Poster: page 19 of 30 is shown per person. No italic, superscript, or subscript is reflected.

PO-467	Degradation of SHORT VEGETATIVE PHASE (SVP) at high temperature is mediated by the CUL3A– LFH1–UBC15 ubiquitin ligase complex in Arabidopsis
	Geummin Youn (Korea university, Republic of Korea) C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 protein interacts with TAF15b and together promote
PO-468	the repression of FLOWERING LOCUS C.
	Jinseul Kyung (Seoul National University, Republic of Korea)
21 Flow	er development
PO-469	To ventral or not to ventral, it may depend on SISTER-OF-PIN1 Ya Min (Department of Ecology and Evolutionary Biology, University of Connecticut)
DO 470	Organ-specific transcriptome analysis reveals candidate genes involved in floral organogenesis in
PO-470	wild barley Gang Chen (Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, JAPAN)
PO-471	Molecular dissection of floral proximal-distal patterning in Torenia fournieri Shihao Su (Sun Yat-sen University, China)
PO-472	Molecular mechanisms patterning the petal of Hibiscus trionum
	Elena Salvi (Sainsbury Laboratory - University of Cambridge)
DO 170	Effects of mechanical forces on the floral development in Arabidopsis thaliana using a novel
PO-473	experimental system
PO-474	Akitoshi Iwamoto (Kanagawa University) Histone Demethylases ELF6 and JMJ13 Antagonistically Regulate Self-Fertility in Arabidopsis
10-474	Charlie Keyzor (Imperial College London)
PO-475	SPATULA's role in radial symmetry establishment via cell-cycle coordination.
	Samuel Wee Han Koh (John Innes Centre, UK)
PO-476	Investigating the role of CYCLIN-P3s in Arabidopsis style development Igra Jamil (John Innes Centre)
PO-477	Comparing the fruit development between Arabidopsis thaliana and other Brassicaceae species Binghan Wang (Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques,
PO-478	Université de Montréal, Canada) Competing developmental gradients coordinate gynoecium morphogenesis in Arabidopsis thaliana
10 110	Andrea Gomez Felipe (Institut de Recherche en Biologie Végétale, Département des Sciences Biologiques, Université de Montréal, Canada)
PO-479	The molecular origin of sensitive stigmas: using Torenia fournieri as a model
	Xuan Zhou (Sun Yat-sen University, China)
PO-480	Sugars on SPATULA: The Bitter and Sweet of Symmetry Establishment During Plant Organogenesis
50.404	Seamus Curran (John Innes Centre)
PO-481	Auxin and gibberellic acid coordinate gene expression networks during receptacle growth Chizuko Yamamuro (College of life science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China)
PO-482	Jasmonate biosynthesis gene SIDAD1 regulates reproductive development in tomato
	Yukako Nomura (Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan)
50.400	A ZINC FINGER PROTEIN plays a role in mediating silique development through integration of
PO-483	phytohormone signaling Wei Ma (School of Biological Sciences, Nanyang Technological University, Singapore 637551,
PO-484	Singapore.)
F U- 404	Fruit indehiscence mutation increases seed size in Arabidopsis Somin Song (Department of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-
PO-485	ro, Gwanak-gu, Seoul 08826, Republic of Korea)
F U- 40J	Characteristics of a Radish Mutant with Longer Siliques shisheng li (Huanggang Normal University, China)
22 Meio	sis/Gamete/Fertilization
PO-486	DGK2 and DGK4 are the essential kinase for gametogenesis and eukaryotic phospholipid metabolism

	Artik Elisa Angkawijaya (Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045 Japan)
	The Plant Pontin and Reptin Homologues, RUVBL1 and RUVBL2A, are involved in plant gametophyte
PO-487	development
	Petra Prochazkova Schrumpfova (Masaryk University, Czech Rep.)
PO-488	Deciphering the evolutionary conservation of SPOROCYTELESS
	Heecheol Yu (Seoul National University, South Korea)
PO-489	Cell-cycle synchronized organelles clustering in meiocytes
	Yuki Hamamura (University of Hamburg, Germany)
	Molecular dynamics of rice MEL2 as a component of cytoplasmic RNP granules regulating proper
PO-490	meiosis initiation
	Kenichi Nonomura (Plant Cytogenetics, Dept. Gene Function & Phenomics, National Institute of Genetics)
PO-491	A cytological framework of female meiosis in Arabidopsis by live-cell imaging
	Bingyan Hu (University of Hamburg, Germany)
	PO-488 PO-489 PO-490

Data as of 2023/4/22. "CC##" indicates the presentation being selected for a short talk in that session. Only the 1ry affiliation is shown per person. No italic, superscript, or subscript is reflected. Poster: page 20 of 30

_		
	PO-492	DNA methylation profiling in Arabidopsis egg cells <i>Hiroki Tsutsui (Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland)</i>
		Identification of a novel U-chromosomal gene required for egg cell differentiation in Marchantia
	PO-493	polymorpha Yen-Ting Lu (Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192 Japan)
	PO-494	Distinct chromatin signatures in the Arabidopsis male gametophyte
	CC16	Zhe Wu (School of Life Sciences, Southern University of Science and Technology, China)
	PO-495	Functions of serine from the phosphorylated pathway on growth, male gametogenesis, and metabolism in Marchantia polymorpha
		Mengyao Wang (RIKEN Center for Sustainable Resource Science, Japan)
	DO 100	Extensive N4 Cytosine Methylation is Essential for Marchantia Transcriptional Programming and
_	PO-496	Sperm Function James M Walker (Salk Institute)
	PO-497	Live imaging of chromosome behavior in pollen mother cells of Arabidopsis meiotic mutant Yoshitaka Azumi (Faculty of Science, Kanagawa University)
	PO-498	Control of meiosis under heat stress
	CC11	Arp Schnittger (University of Hamburg, Germany) Effect of callose on symplast and apoplast related events in controlling proper meiosis initiation in
	PO-499	rice anther locules
		Harsha Somashekar (Plant Cytogenetics Laboratory, National Institute of Genetics, Mishima, Japan)
	PO-500	Arabidopsis novel proteins required for the construction of pollen exine reticulate structure
	PO-501	Sumie Ishiguro (Nagoya University, Japan) KNOLLE/SYP111 and SYP112 cooperate in cytokinesis during gametogenesis in Arabidopsis thaliana
		Kazuo Ebine (NIBB, Japan)
	PO-502	Ca2+-induced removal of inner vegetative plasma membrane in Arabidopsis sperm cells
	CC32	Naoya Sugi (KIBR, Yokohama City Univ.) Cytosolic phosphoglucose isomerase is essential for microsporogenesis and embryogenesis in
	PO-503	Arabidopsis
		Hung-Chi Liu (Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan)
	PO-504	Gene expression dynamics in developing pollen of Arabidopsis thaliana addressed by multi-omics approaches
		Božena Klodová (Institute of Experimental Botany of the Czech Academy of Sciences, Laboratory of
	PO-505	Pollen Biology, Czech Republic) DNA demethylases act together to regulate reproductive development in Arabidopsis
	F O- 303	Joo Young Lim (Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul 08826, South Korea)
	PO-506	Requirement of Non-specific Phospholipase C (NPC) in Plant Viability
		Anh Hai Ngo (RIKEN Center for Sustainable Resource Science (CSRS)) A novel Arabidopsis thaliana protein, POTI, plays an important role in maintaining pollen tubes'
	PO-507	integrity
	PO-508	Natalia Julia Rzepecka (Graduate School of Humanities and Sciences, Ochanomizu University, Japan, Analysis of a Rab GTPase in pollen tube guidance
	10-000	Kumi Matsuura-Tokita (The University of Tokyo, Japan)
		Proposed molecular mechanism for persistent growth capability in physiologically anuclear pollen
	PO-509	tubes Kazuki Motomura (Ritsumeikan Univ., Japan)
	PO-510	The Regulation of Arabidopsis MALE STERILITY1 (MS1) in Pollen Development
		Helen White (University of Nottingham)
	PO-511	Investigation of genes involved in species-specific pollen tube guidance and gametophyte development.
	10-011	Masahiro Kanaoka (Prefectural University of Hiroshima)
	PO-512	Tip-localized receptor modules orchestrate pollen tube behavior in angiosperms
	PO-513	Hidenori Takeuchi (Nagoya University, Japan) Quantification of species-preferential pollen tube guidance by the ovule in Arabidopsis species
	PO-515	Takuya T Nagae (Graduate School of Agricultural and Life Sciences, The University of Tokyo)
	PO-514	Novel function of cuticles as a reproductive barrier in Brassicaceae
	PO-515	Yoshinobu Kato (Grad. Sch. Agric. Lif. Sci., The University of Tokyo) Roles of cytoskeleton in Arabidopsis synergid cells
	10010	Daichi Susaki (Yokohama City University, Japan)
	PO-516	Type II arabinogalactans play important roles in pollen - pistil interactions
		Sílvia Coimbra (LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade dc Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal)
	PO-517	Analysis of a key factor regulating cell fusion between early endosperm and persistent synergid.
	DO 543	Daisuke Maruyama (Kihara Institute for Biological Research, Yokohama City University)
	PO-518	Cytological Analysis of Cell Invasion during Gametophyte Interactions in Arabidopsis Nicholas James Desnoyer (University of Zurich)

PO-519	Molecular control of dominance/recessivity interactions between self-incompatibility alleles in Arabidopsis
PO-520	Vincent Castric (CNRS - University of Lille) Molecular basis of multi-phased pistil defense mechanism against foreign pollen
PO-521	Sota Fujii (The University of Tokyo) Studies toward unveiling the molecular scenario of double fertilization in Arabidopsis thaliana Tomoko Igawa (Chiba University, Japan)
PO-522	Identification and analysis of the putative GCS1-interacting proteins in Arabidopsis
PO-523	Ari Yoshimura (Chiba University, Japan) Sperm nuclear fusion is not required for the onset of embryogenesis
PO-524	Shuh-ichi Nishikawa (Faculty of Science, Niigata University) The female gametes expressed protein FOG3 is required for gamete fusion in Arabidopsis thaliana Yuan Wang (State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, China)
23 Emb	ryogenesis/Seed development
PO-525	Approach to elucidate the molecular mechanism regulating the basal meristem of hornwort sporophytes
PO-526	Kazune Ezaki (Rikkyo university) Delayed embryo-proper development triggers suspensor derived polyembryony in Arabidopsis
PO-527	Honglei Wang (Wageningen University & Research, Netherland) Quantification of zygote polarization dynamics for body axis formation in Arabidopsis Minako Ueda (Tohoku University, Japan)
PO-528	Elucidation of elongation mechanism of Arabidopsis zygote using image analysis methods based on live-cell imaging
10020	Hikari Matsumoto (Tohoku University, Japan) Antagonistic effects on Arabidopsis hybrids exhibiting endosperm based post-zygotic hybridization
PO-529	barriers Renate Marie Alling (University of Oslo)
PO-530	Endosperm cellularization is initiated by a family of auxin related factors Nicolas Butel (Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany)
PO-531	The identification of type I MADS box genes as the upstream activators of an endosperm-specific invertase inhibitor in Arabidopsis
	Dongfang Wang (Spelman College) Natural variation in WHITE-CORE RATE 1 regulates redox homeostasis in rice endosperm to affect
PO-532	grain quality Bian Wu (Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China)
PO-533	Identification and functional investigation of diversifying seed genes at the maternal-offspring interface in Arabidopsis thaliana <i>Caroline Anne Martin (MIT, USA)</i>
PO-534	The plant hormone ABA alleviates the interploidy barrier Hikaru Sato (Swedish University of Agricultrual Sciences, Sweden)
PO-535	Impact of LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE 2 (LPAT2) in de novo glycerolipid metabolism and developmental control: Two sides of the same coin?
PO-536	Niña Alyssa Barroga (Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan) Comparative Omics of Arabidopsis Developing Seed with Enhanced Fatty Acid Synthesis
PO-537	Brian P Mooney (University of Missouri) Molecular basis of the key regulator WRINKLED1 in plant oil biosynthesis
10001	Que Kong (School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.)
PO-538	A MYB transcription factor regulates the biosynthesis of very-long-chain fatty acids in Arabidopsis Yuzhou Yang (School of Biological Sciences, Nanyang Technological University)
PO-539	Direct balancing of lipid mobilization and ROS production by the epoxidation of fatty acid catalyzed by a cytochrome P450 protein during seed germination chun-peng song (State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaliana, 475001 (State Section 2019)
PO-540	Kaifeng, 475004, China) Exploring RRT1 function in the synthesis of Arabidopsis seed mucilage RG1 Yuki Aoi (INRAE, Institut Jean-Pierre Bourgin, Université Paris-Saclay, AgroParisTech, 78000, Versailles, France)
PO-541	Apetala 2 regulates seed longevity through lipid polyester accumulation Eduardo Bueso Rodenas (Instituto de Biología Molecular y Celular de Plantas, Universitat Politecnica de València, 46022 Valencia, Spain)
PO-542 CC19	Rational approaches to synchronizing germination in seed populations Liam Walker (School of Life Sciences, University of Warwick)
PO-543	AtC3H59/ZFWD3, an Arabidopsis nuclear protein, interacts with Desi1 and is involved in seed germination, seedling development, and seed development Hye-Yeon Seok (Pusan National University, Republic of Korea)
	nye-reon seok (rusan ivalional oniversity, nepublic of Norea)

		AtC3H12, an Arabidopsis non-TZF transcriptional activator, negatively affects seed germination and
PO-5	544	seedling development
		Yong-Hwan Moon (Pusan National University)
PO-5	545	Constructing and testing a genetic network for controlling seed germination in Arabidopsis
		Ming Yang (Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater,
		OK 74078, USA)
PO-5	546	Arabidopsis INDETERMINATE DOMAIN 4 is involved in the control of seed germination by light
		Akiko Kozaki (Shizuoka University, Japan)
		AtC3H12, an Arabidopsis non-TZF transcriptional activator, negatively affects seed germination and
PO-5	547	seedling development
		Mairaj Bibi (PUSAN NATIONAL UNIVERSITY)
PO-5	548	Structure-function analysis of TMB-RESISTANT1, a B2 Raf-like kinase in Arabidopsis thaliana
		Eunsun Kim (Sejong University, Republic of Korea)
PO-5	549	Heterosis in Intraspecific Hybrid of Arabidopsis thaliana during Early Development
		Putri Wijayanti (Division of Biological Science, Graduate School of Science and Technology, Nara Institute
		of Science and Technology, Japan)
		Identification and characterization of soybean KIX genes by comparative analysis with Arabidopsis
PO-5	550	thaliana
		MI-SUK SEO (National institute of crop science, Republic of Korea)
PO-5	551	Analysis of a blue light receptor CRY1 during plant regeneration
		Min Li (University of Tokyo, Japan)

24 Stem cell/Regeneration

PO-552	Molecular Mechanisms of Light-Mediated Regulation of Plant Regeneration Yetkin Caka Ince (RIKEN)
PO-553	HY5-mediated light signals determine the new meristem fate during plant regeneration Yu Chen (Department of Biological Sciences, The University of Tokyo, Japan)
	ASHH2 regulates plant regeneration through regulation of photosynthesis and glucose metabolic
PO-554	pathways Kana Yoshida (University of Tokyo, Japan)
	Hyperosmotic stress-induced somatic embryogenesis and its continuous culture in Japanese
PO-555	honewort (Cryptotaenia japonica; Apiaciae) Sana Takahashi (Yokohama City University, Japan)
	Molecular identities of wounding signals that promote plant regeneration and their perception
PO-556	mechanisms Yosuke Sasai (The University of Tokyo, Japan)
PO-557	Roles of At2-MMP during tissue reunion in incised Arabidopsis inflorescence stem Afiifah Machfuudzoh (Graduate School of Science and Technology, University of Tsukuba, Japan)
PO-558	Exposure to long-term cold enhances callus formation in Arabidopsis
	Fu-Yu Hung (RIKEN, CSRS)
PO-559	Mechanistic analysis of the improvement of shoot regeneration ability by gamma irradiation Ryuhei Hashimasa (The University of Tokyo, Japan)
PO-560	Brassinosteroid receptor-mediated regulation of tissue regeneration in Arabidopsis Ye Zhang (Nara Institute of Science and Technology, Japan)
	Utilization of Arabidopsis thaliana developmental regulator genes for differentiation control of
PO-561	transgenic plant cells Shohei Koyama (Chiba University, Japan)
	Transcriptome and metabolome profiles during cellular differentiation of tobacco transgenic cells
PO-562	expressing Arabidopsis developmental regulator genes Yuka Sato (Chiba University, Japan)
	Genetics and Multi-Omics Integration Analyses Identified Cell Differentiation State Maintenance
PO-563	Mechanisms in hope-1 Mutant Hypocotyls Ali Ferjani (Department of Biology, Tokyo Gakugei University)
PO-564	It's All in the Timing: Enhancing Regeneration Efficiency Using Morphogenic Factors
CC04	Bastiaan Bargmann (Virginia Tech)
PO-565	Finding the sweet spot – How brassinosteroids interfere with shoot regeneration processes Luiselotte Rausch (RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045. Japan)
	Submergence promotes auxin-induced callus formation through ethylene-mediated post-
PO-566	transcriptional control of auxin receptors
	Seung Yong Shin (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Korea)
PO-567	Functional analysis of histone methyltransferase required for shoot regeneration
	Masako Migihashi (The University of Tokyo, Japan)
PO-568	Checkpoints in cellular programming during root regeneration
	Bruno Guillotin (New York University, Center for Genomics and Systems Biology)
PO-569	Functional analysis of a chromatin remodeling factor involved in the process of plant regeneration Ayaka Horie (University of Tokyo, Japan)

	WIND1 controls site-specific histone acetylation/deacetylation and promotes somatic embryogenesis
PO-570	in Arabidopsis
	Akira Iwase (RIKEN CSRS, Japan)
	Molecular mechanisms underlying local histone modification changes during stem cell formation in
PO-571	the moss Physcomitrium patens
	Masaki Ishikawa (National Institute for Basic Biology, Japan)
	Single-nuclei transcriptome and chromatin accessibility analyses reveal gene regulatory networks
PO-572	underlying stem cell formation in the moss Physcomitrium patens
50.570	Ruan Morne De Villiers (National Institute for Basic Biology, Japan)
PO-573	Cytokinin-dependent regulation of plant cell dedifferentiation via pre-mRNA splicing in Arabidopsis
DO 574	Ami Takeuchi (The University of Tokyo, Japan)
PO-574	Single-nucleus RNA-seq revealed transcriptomic landscapes of epidermal reprogramming
DO 575	Hatsune Morinaka (CSRS, RIKEN, Kanagawa, Japan)
PO-575	Transcriptional Regulation of Cell-cell Movement During Root Tip Regeneration
CC04	Itay Cohen (Hebrew University of jerusalem)
PO-576	Plant Regeneration: To Cell and Back
PO-577	Kelsey Reed (Virginia Tech, USA)
PU-5/7	An induced pluripotent stem cell (iPS) tool to overcome regenerative recalcitrance in plants
	Jana Wittmer (Wageningen University and Research) Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and
PO-578	transformation
FO-576	Xuemei Liu (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences)
	Confocal microscopy-enabled morphometric reverse tracking of Arabidopsis callus development
PO-579	from leaf mesophyll protoplasts
10010	Patience Chatukuta (Max Planck Institute for Biology Tübingen, Germany)
PO-580	Molecular genetic analysis of the role of BTAF1, a TBP-associated factor, in shoot regeneration
	Takaaki Yonekura (University of Tokyo, Japan)
PO-581	CLE peptides modulate shoot development through WUS regulation
	Nadiatul A. Mohd-Radzman (Sainsbury Laboratory Cambridge University (SLCU), Bateman Street, CB2
	1LR, Cambridge, United Kingdom.)
PO-582	Analysis of stem cell-promoting CLE peptide signaling in the shoot apical meristems of land plants
CC10	Yuki Hirakawa (Gakushuin University, Japan)
PO-583	Functional analysis of JINGASA transcription factor in stem cell dynamics in Marchantia polymorpha
	Go Takahashi (Gakushuin University, Japan)
	Conserved expression of a core plant stem cell regulator despite extreme divergence in cis-
PO-584	regulatory sequence and organization
	Danielle Ciren (Cold Spring Harbor Laboratory)
PO-585	Budding Heads: Activation and Competition of Arabidopsis Axillary Buds
Online-only	Zoe Nahas (Sainsbury Laboratory, University of Cambridge)

25 Leaf development

	Competition for resources during semi-sequential growth of developmental units drive allometric
PO-586	patterns in the grass Setaria
	Renée Dale (Donald Danforth Plant Science Center, USA)
PO-587	Spiralling out of Control: Regulation of Phyllotactic Stability
	Merijn Kerstens (Plant Developmental Biology, Wageningen University and Research)
	Temporal expression of BLADE-ON-PETIOLE 1 and 2 in successive leaves define the shape of their
PO-588	lamina
CC16	Mingli Xu (University of South Carolina, USA)
	Multi-platform Metabolomics Identified Key Metabolites that Coordinate Cell Number and Size During
PO-589	Leaf Morphogenesis
	Hiromitsu TABETA (RIKEN Center for Sustainable Resource Science)
	Molecular functions of AS2, a plant-specific AS2/LOB domain protein essential for leaf development
PO-590	and differentiation
	Sayuri Ando (Chubu University, Japan)
PO-591	TCP transcription factors regulate cell expansion in leaf development
	Tomotsugu Koyama (Suntory Foundation for Life Sciences)
	ORESARA15 and ANGUSTIFOLIA3: Key Regulators of Cell Proliferation during Arabidopsis Leaf
PO-592	Growth
	Sang Eun Jun (Dong-A University, Republic of Korea)
	Analysis of gene expression patterns in specific meristems of one-leaf plant Monophyllaea glabra by
PO-593	whole-mount in situ hybridization
	Shunji Nakamura (Grad. Sch. Sci., Univ. Tokyo, Japan)
	What did the grasses gain by losing PEAPOD? Evolution and conserved functionality of organ size
PO-594	and shape regulator PEAPOD
CC07	Ruth Cookson (Plant Biotechnology, Grasslands Research Centre, AgResearch Ltd., Palmerston North,
0001	New Zealand)

	Identification of interacting factors of the TARANI/ Ubiquitin-specific protease 14 (UBP14) in
PO-595	Arabidopsis thaliana
CC06	Anjana S Hegde (Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India)
	Genetic interaction of Arabidopsis ELP4 and DRL1 in the regulation of cell proliferation and
PO-596	establishment of leaf dorsoventral polarity
	Gyung-Tae Kim (Dong-A University, Republic of Korea)
PO-597	A quantitative study of pavement cell shape in the upper leaf epidermis
	Jacqueline Nowak (University of Potsdam, Germany)
PO-598	Puzzle-shaped plant cells are developmental constraints driven by mechanical stress
	Nicola Trozzi (John Innes Centre, United Kingdom)
PO-599	Fluorescence imaging analysis of the structure and development of hydathodes in Arabidopsis
	Hiroki Yagi (Konan Univ.)
PO-600	Thallus development controlled with Marchantia-specific peptide hormone-receptor pair
	Hidefumi Shinohara (Fukui Prefectural University, Japan)

26 Root development

	A group of C2H2 Zinc Finger proteins coordinates the developmental reprogramming mediated by
PO-601	danger signals in the Arabidopsis root meristem
	Souvik Dhar (School of Biological Sciences, Seoul National University, Korea)
	Roles of XAL2, SOC1 and AGL24 MADS-box genes in Arabidopsis thaliana root development and
PO-602	osmotic stress responses Claudio Augusto Castañón-Suárez (Laboratorio de Genética Molecular, Epigenética y Desarrollo de
	Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México)
PO-603	Does LHP1 act independently of Polycomb in roots? Gabriela Guzmán-Favila (Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de
	plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, México)
PO-604	As above so below? ULTRAPETALA1 regulation in Arabidopsis root development Carlos Emiliano Cortés-Quiñones (Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolucić
	n de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), México)
PO-605	SCFFBS1 Regulates Root Quiescent Center Cell Division via Protein Degradation of APC/CCCS52A2 Kyoung Rok Geem (Chungbuk National University, Korea)
	Combined Approach of GWAS and Phylogenetic Analyses to Identify New Candidate Genes That
PO-606	Participate in Arabidopsis thaliana Primary Root Development Using Cellular Measurements and Brenda Anabel Lopez-Ruiz (Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas,
	Departamento de Ecología Funcional, Instituto de Ecología, UNAM)
DO 007	Uncovering the hidden aspects of cell division and elongation dynamics at the tip of growing
PO-607	Arabidopsis roots using 4D-microscopy, Al-assisted image processing, and data sonification Tatsuaki Goh (Div. Biol. Sci., NAIST, Japan)
PO-608	Dissecting the role of miR160-dependent regulation of ARF gene expression in root cap Keita Tanaka (Nara Institute of Science and Technology, Graduate School of Science and Technology,
	Division of Biological Science)
PO-609	A comprehensive developmental atlas of suberized tissues at the single cell level
PO-610	Charlotte Noelle Miller (The Salk Institute of Biological studies) Single-cell profiling of suberizing cells identifies a novel periderm regulator
10-010	Manisha V. Haag (Salk Institute for Biological Studies)
PO-611	An inquiry into the origin of radial patterning of root-hair-cell distribution
	Kyeonghoon Lee (Department of Biological Sciences, Seoul National University)
	SUPERROOT2-dependent Fine-tuning of Local Auxin Distribution for Arabidopsis Lateral Root
PO-612	Formation
	Chieko Goto (Grad. Sch. of Sci., Kobe Univ.)
DO 612	Auxin biosynthesis inhibitors impair auxin-induced directional nuclear migration in lateral root
PO-613	founder cells in Arabidopsis thaliana Sanae Kaneta (Osaka University, Japan)
PO-614	Dimorphism of LR growth regulated by auxin and cytokinin
	Feiyang Lin (Grad. Sch. Life Sci., Hokkaido Univ., Japan)
	Functional Analysis of RLF, a Cytochrome b5-Like Heme Binding Protein, in Plant Organ
PO-615	Development Kentaro Iwata (Grad. Sch. of Sci., Kobe Univ., Japan)
PO-616	Two-step regulation of lateral root spacing in Arabidopsis thaliana
	Shohei Oshiro (Div. Bio. Sci., NAIST) Coordinating root system architecture: the intersection of CEP and Cytokinin hormone pathways in
PO-617	Arabidopsis
CC26	Michael Taleski (ANU. Australia)

PO-618	Transcriptional network to synchronize alteration in the developing lateral root primordium (LRP) and LRP-overlay cells Kosuke Mase (Faculty of Agriculture, Meijo University)
PO-619	MYB93-mediated Very Long-Chain Fatty Acid Signaling networks in lateral root primordium development Yuta Uemura (Meijo University, Japan)
27 Cell	division/Cell cycle
PO-620	Two Arabidopsis cyclins are sensitive targets to intracellular acidification acting as a hub between perception and stress response gaetano bissoli (Universitat Politecnica Valencia, Spain)
PO-621	Cell proliferation control mediated by ANAC082 in response to nucleolar stress in Arabidopsis thaliana Tai-yin Hsu (National Cheng Kung University, Taiwan)
PO-622	Control of DNA replication by histone methyltransferases ATXR5 and ATXR6 in Arabidopsis thaliana Kar Yee Moo (Graduate School of Science and technology, Nara Institute of Science and Technology, Japan)
PO-623	A GRAS family transcription factor, SCARECROW-LIKE28, regulates cell size by inhibiting G2 progression in Arabidopsis Masaki Ito (Sch. Biol. Sci. Tech., Col. Sci. Eng., Kanazawa Univ., Japan)
PO-624	CRISPR/Cas9-mediated mutagenesis of SAMBA gene alters growth and development in plants. Nubia Eloy (Universidade de São Paulo, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz')
PO-625	Functional analyses of HPY2/NSE2 and SMC5/6 complex. Takashi Ishida (Kumamoto University, Japan)
PO-626	Analysis of the effect of autopolyploidization on root growth in Arabidopsis thaliana with spatial reference to "high-ploidy syndrome" Suzuka Kikuchi (Fac. Adv. Sci. and Tech., Kumamoto Univ., Japan)
PO-627	CDKG2 and SKIP act downstream of UBP14 to control endoreduplication and cell growth in Arabidopsis Shan Jiang (Institute of Genetics and Developmental Biology, Chinese Acadamy of Sciences, China)
PO-628	Expanding the kinetochore universe in flowing plants Shinichiro Komaki (Nara Institute of Science and Technology, Graduate School of Biological Sciences, Japan)
PO-629	Keeping it together: The role of scaffold proteins during division plane control Jonas Buhl (Leibniz-Institute of Plant Biochemistry, Halle (Saale), Germany)
PO-630	Novel plant cell division inhibitors identified by chemical screening using Arabidopsis zygote Yusuke Kimata (Tohoku University, Japan)
PO-631	Plant-specific mitotic microtubule structures and cell division modes Takema Sasaki (Graduate School of Science, Nagoya University, Japan) GRAS Family Transcription Factor Is A New Regulator Of Asymmetric Cell Division And Polarity In
PO-632	Moss Physcomitrium Patens Alisa Vyacheslavova (Hokkaido University, Graduate School of Life Science)
PO-633	Shaping root architecture V Willemsen (Cluster Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands)
	& tissue differentiation
PO-634	PBLs and their role in defining root endodermis signaling specificity Irene Guzmán-Benito (University of Lausanne, Switzerland) CRISPR extinction (CRISPRe) as a neurorful to al fan angine spin specific to an environment of the second seco
PO-635	CRISPR activation (CRISPRa) as a powerful tool for engineering gene regulatory networks in plants <i>Anaxi Houbaert (UNIL - DBMV)</i> Patterning in 3D: imaging three-dimensional anatomy and epidermal cell fate in Arabidopsis roots
PO-637	George Janes (University of Nottingham, School of Biosciences, UK) Light regulates xylem cell differentiation via PIF in Arabidopsis
	Miguel de Lucas (Durham University - UK) Visualization of spatiotemporal dynamics of cytokinin responses and its role in secondary growth
PO-638	initiation in Arabidopsis roots Shunji Shimadzu (University of Tokyo, Japan)
PO-639	A zinc-finger transcription factor, LGA1, negatively regulates lateral growth in Arabidopsis and trees Wiktoria Fatz (Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, 00790, Helsinki, Finland)
PO-640	Towards elucidation of the molecular mechanisms of tuberous root development in cassava

 PO-640 Towards elucidation of the molecular mechanisms of tuberous root development in cassava Yoshinori Utsumi (RIKEN CSRS)
 PO-641 Ubiquitination-mediated xylem vessel element formation in response to pathogen in plants

PO-642	FLY Ubiquitin E3 Ligases Are Transcriptionally Regulated by VND7 during Xylem Vessel Cell Tadashi Kunieda (NAIST, Japan)
	Investigation of the function of Clade B AT-hook motif nuclear-localized proteins in the root xylem
PO-643	development
	Hee-Ji Shin (Seoul national university)
	A long-distance top-down movement of a transcription factor regulating the root phloem
PO-644	development
CC20	Ji-Young Lee (Seoul National University)
0020	Characterization of NAC-REGULATED SEED MORPHOLOGY1 transcription factor for regulating the
DO 645	
PO-645	root phloem development
	Jongsung Park (School of Biological Sciences, College of Natural Science, Seoul National University, 1
50.040	Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)
PO-646	Cellular adaptations for long-distance transport through the phloem sieve tube
CC20	Lothar Kalmbach (University of Lausanne, Department of Plant Molecular Biology)
PO-647	Phloem cells - from single cell transcriptomics to development and function
CC19	Jiyun Kim (Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225,
0013	Germany)
	Regulatory Functions of NAC domain Transcription Factors for Root Phloem Development in
PO-648	Arabidopsis thaliana
	Heewon Shin (School of Biological Sciences, College of Natural Science, Seoul National University, Seo
	08826, Republic of Korea)
PO-649	Revealing autolytic mechanisms of sieve elements by an improved induction system
	Yuki Sugiyama (Institute for Advanced Research, Nagoya University)
PO-650	Specification of epidermal cell fate in plant shoots
1 0 000	Shinobu Takada (Osaka University, Japan)
PO-651	Leaf epidermal patterning and fate determination
CC04	Chin-Min Kimmy Ho (Institute of plant and microbial biology, Academia Sinica)
PO-652	
PU-052	Identification and expression analysis of six CsCPC genes in tea leaves (Camellia sinensis).
	Juri WAKAMATSU (Hiroshima University, Japan)
DO 050	Cell type-specific attenuation of brassinosteroid signaling precedes stomatal asymmetric cell
PO-653	division
	Boyu Guo (Ghent University, Belgium)
	Abscisic acid regulates stomatal production by imprinting a SnRK2 kinase-mediated phosphocode
PO-654	on the master regulator SPEECHLESS
	XIN YANG (National University of Singapore, Singapore)
	The epigenetic regulation of the master stomatal regulator SPEECHLESS by the Arabidopsis VAL
PO-655	family of transcriptional repressors
	Li Cong Chua (National University of Singapore)
PO-656	A roadmap to guard cell: how the cis-trans regulome drives fate transitions
	Ao Liu (Stanford University)
PO-657	HOMEODOMAIN-LIKE protein (HDL) mediated chromatin organization modulates leaf epidermal
	Ansar Ali (Institute of Plant and Microbial Biology, Academia Sinica)
PO-658	Turn over a new leaf: A single cell view of leaf epidermis in Arabidopsis
10-000	Chi Kuan (Institute of Plant and Microbial Biology, Academia Sinica, Taiwan)
PO-659	
FO-059	Experimental Validation of the Mechanism of Stomatal Development Diversification
DO 000	Yuki Doll (NAIST, Japan)
PO-660	Stomata-derived intercellular signaling that directs mesophyll air space formation
CC26	Yuki Yoshida (Kumamoto University, Japan)
PO-661	Comparative analysis of airspace formation process between Arabidopsis and Duckweed
	Kyungyoon Kim (Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic
	of Korea)
	Co-option of the conserved and reduced stomatal transcriptional network FAMA-WASABI MAKER for
PO-662	the myrosinase-glucosinolate defense system
	Makoto Shirakawa (Nara Institute of Science and Technology, Japan)
PO-663	De novo specification of epidermal cells in Arabidopsis abscission zone
	Xiaohong Wen (Department of New Biology, DGIST, Daegu 42988, Republic of Korea)
	Conserved (Epi)Genetic Mechanisms of Aging in Plants: Insights from Laminopathies in Arabidopsi
PO-664	
Г U- 004	thaliana
	Oscar Juez (Okinawa Institute of Science and Technology)
DO 005	MnSOD fine-tunes the root growth and floral organ abscission by modulating ROS metabolism in
PO-665	MnSOD fine-tunes the root growth and floral organ abscission by modulating ROS metabolism in Arabidopsis Jinsu Lee (Seoul national university, Republic of Korea)

29 Cell death/Senescence

	PLTs and VNDs oppositely regulate ZAT transcription factors to control cell death in the Arabidopsi
PO-666	root
	Ming Feng (Swedish university of agricultural sciences)
PO-667	MBD10 is involved in ABA-inducible leaf senescence in Arabidopsis
	Yangdan Li (Tokyo University of Agriculture and Technology)
	Multiple N-conjugated forms of Cytokinins are Involved in Delaying Natural and Abiotic Stress
PO-668	Senescence
	Aaron M Rashotte (Auburn University)
PO-669	Uncovering the possible link between cytosolic and apoplastic glutathione degradation
	Takehiro Ito (Tokyo University of Agriculture and Technology, Japan)
	Comprehensive transcriptomic analysis of age-, dark-, and salt-induced senescence reveals
PO-670	underlying mechanisms and key regulators of leaf senescence in Zoysia japonica
	Lanshuo Wang (Interdisciplinary Graduate Program in Advanced Convergence Technology & Science,
	Jeju National University, Jeju, South Korea)
	Genetic Variants Driving Distinct Senescence Programs in Arabidopsis Accessions from the Kyrgyz
PO-671	Tajik Mountainous Region
	PHAN PHUONG THAO DOAN (Interdisciplinary Graduate Program in Advanced Convergence
	Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
	Genetic variants of Accelerated Cell Death 6 drive natural diversity of age-induced leaf senescence
PO-672	through accession-dependent cell death process in Arabidopsis
	Jin Hee Kim (Subtropical Horticulture Research Institute, Jeju National University, Republic of Korea)

30 Genetic variation/Population

PO-673 CC30	Altitudinal genetic differentiation in the leaf wax-mediated flowering bud protection against frost in an early-spring flowering herb, Arabidopsis halleri <i>Hiroshi Kudoh (Kyoto University, Japan)</i>
PO-674	Altitudinal divergence of cold tolerance in Arabidopsis halleri and their genetic background: investigation of the key leaf traits and genome in F2 population Naofumi Yoshida (Tohoku University)
PO-675	Genetic basis of semi-dwarfism and increased branching phenotypes in Tibetan Arabidopsis thaliana Jixuan Yang (State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, China)
PO-676	Larger genomes evolve under temperature-stable environments in allohexaploid Rorippa indica (Brassicaceae)
DO 077	Ting-Shen Han (Xishuangbanna Tropical Botanical Garden, the Chinese Academy of Sciences)
PO-677 CC30	Seasonal dynamics of epigenome in a natural population of Arabidopsis halleri
CC30	Haruki Nishio (Shiga Univ., Japan) Seasonally distinct controls of leaf senescence in response to self-shading and sink demand in
PO-678	Arabidopsis helleri Genki Yumoto (Kyoto university, Japan)
	The genetic diversity provided by natural Arabidopsis accessions to identify potentially adaptive
PO-679 CC01	differences in root morphology and soil resource capture
PO-680	Christian RM Hermans (University of Florida, USA) Field transcriptome dynamics of barley during winter cultivation June-Sik Kim (RIKEN Center for Sustainable Resource Science, Japan)
PO-681	Remote-sensing-combined haplotype analysis using MAGIC population reveals the characters of phenology QTLs for canopy height in rice Daisuke Ogawa (Institute of Crop Science, National Agriculture and Food Research Organization)
PO-682	Rapid evolution in Arabidopsis thaliana in global field experiments in the pan-genomic era
CC15	Xing Wu (Carnegie Institution for Science, USA)
	Staying alive: resistant evaluation to acetolactate synthesis-inhibitors herbicides in Amaranthus
PO-683	palmeri recombinant proteins. Alfredo Manicardi (Department of Forestry and Agricultural Science and Engineering, Agrotecnio-CERCA
BO 00 <i>i</i>	Center, University of Lleida, Lleida, Spain)
PO-684	1001 Phenomes: a community resource Almudena Mollá Morales (Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Austria)

31 Genomics/Bioinfomatics

PO-685	Construction of Genetic Engineering System for Robust and Versatile Inter-species Gene Function Analysis in Viola
PO-686	Donghyeon Kim (Seoul National University, Korea) Col-CC: An Updated Reference Genome of Arabidopsis thaliana
PO-687	Xiao Dong (Max Planck Institute for Plant Breeding Research) Functional annotation of proteins for signaling network inference in non-model species
PO-688	Lisa Van den Broeck (North Carolina State University, US) New elements of cis-regulatory code of plant genes revealed by deep learning models
CC23	Jedrzej Szymanski Szymanski (Forschungszentrum Juelich, CEPLAS, BioSC, Institute of Bio- and Geosciences, IBG4 Bioinformatic, 52428 Juelich, Germany)
PO-689	Controlling transcription from within transcribed regions in plants Yoav Voichek (Gregor Mendel Institute (GMI), Vienna)
	Improve the coverage of Arabidopsis proteome by alternative proteases and mass spectrometry data
PO-690	independent acquisition mode Runxuan Zhang Zhang (The James Hutton Institute)
PO-691	Development of a unified theory for molecular biology Ryoichi Sato (RIKEN Center for Sustainable Resource Science)
PO-692	Inference of developmental trajectories from single-cell sequencing data
PO-693	Philip Shushkov (Indiana University) A single-nucleus transcriptome atlas of seed-to-seed development in Arabidopsis
CC03	Travis Lee (Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037)
PO-694	Implementation of the single-nucleus atlas of Arabidopsis thaliana to the entire plant research Jaewook Kim (Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea)
	Phylogenetic profiling in Arabidopsis thaliana as a new annotation platform for revealing gene
PO-695	functions in plants Elad Sharon (The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Israel)
PO-696	Updated phylogeny and protein structure predictions revise the hypothesis on the origin of MADS-
10-000	box transcription factors in land plants Yichun Qiu (Max Planck Institute of Molecular Plant Physiology, Germany)
PO-697	Application of a method detecting functionally diversified duplicate pairs from Arabidopsis duplicate genes to wheat homoeologous genes <i>Akihiro Ezoe (Riken)</i>
PO-698	Single-plant omics : profiling individual plants in a field to identify processes affecting yield Steven Maere (Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark
PO-699	71, 9052 Ghent, Belgium) Optimization of sampling conditions for predicting gene expression in rice
	Dan Eiju (Keio University Faculty of Environment and Information Studies) Cellular Clarity: A Logistic Regression Approach to Identify Root Epidermal Regulators of Iron
PO-700	Deficiency Response Selene R Schmittling (Department of Electrical & Computer Engineering, NC State University)
32 Gene	transfer/Gene editing
DO 704	The simple and useful Agrobacterium-mediated infiltration method for transient expression assays
PO-701	and single-cell genome editing in Arabidopsis thaliana Miho Ikeda (Fukui Prefectural University, Japan)
	Layered double hydroxide (LDH) nanosheets as an efficient nanotransporter of biomolecules enable
PO-702	the advancement of genome engineering in intact plant cells Wenlong Bao (Hainan University)
PO-703 CC33	Single-cell targeted chemical or genetic boosting of genome editing in maize
PO-704	Ling Meng (KWS Group) Generating minimum set of gRNA to cover multiple targets in multiple genomes with MINORg
	Rachelle R. Q. Lee (National University of Singapore)
PO-705	Pooled CRISPR/Cas9-induced perturbations followed by single-cell RNA-sequencing in Arabidopsis thaliana protoplasts
	Graeme Oliver Vissers (New York University) Allelic Variations in GA20ox1 via CRISPR-Mediated Base Editing Lead Quantitative Clines of Growth
PO-706	in Arabidopsis Jun-Hyuk Kim (The Catholic University of Korea, Republic of Korea)
BA FH	Insights into the molecular mechanisms of CRISPR/Cas9-mediated gene targeting at multiple loci in
PO-707	Arabidopsis Daisuke Miki (Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Science)
	Sublices, Ulillese Adduelly Ul Sublice)

	Developing tools for targeted C-to-T base editing in the plastid and mitochondrial genome of
PO-708	Arabidopsis thaliana
	Issei Nakazato (Graduate School of Agricultural and Life Sciences, The University of Tokyo)
PO-709	Targeted A-to-G base editing in chloroplast and mitochondrial genomes in Arabidopsis thaliana
	Chang Zhou (Tokyo University, Japan)
	PRIMA: PRobe-Induced heteroduplex Mobility Assay, a reliable method to detect single-nucleotide
PO-710	variations time- and cost-effectively
	Misako YAMAZAKI (Department of Evolutionary Biology and Environmental Studies, University of Zurich,
	Switzerland)
	The development of a new gene editing technology based on Brassica rapa microspore regeneration
PO-711	system and carbon nanotube
	Jinhee Kim Kim (Institute of horticultural and herbal science, Korea)
	Establishing transformation protocols for efficient genome editing and transgene expression across
PO-712	the Brassicaceae family
	Evelyn Cassandra Alferez (Faculty/Staff)
33 Imaa	ing/Quantification
55 illay	ing/quantification
PO-713	Plant Accessible Tissue Clearing Solvent System for 3-D Imaging of Whole Plant
	Hantao Zhang (China Agricultural University)
	Whole-mount smFISH allows combining RNA and protein quantification at cellular and subcellular
PO-714	resolution
	Lihua Zhao (Swedish University of Agricultural Sciences)
PO-715	A live imaging system to analyze spatiotemporal dynamics of transcription activity.
	Mio K. Shibuta (Yamaqata University, Japan)

Deep Learning-based Recognition of Arabidopsis Accessions using Time-Series RGB High-PO-716 Throughput Measurements Rijad Saric (La Trobe Institute for Sustainable Agriculture & Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, VIC 3086, Australia.)

 Time-series field phenotyping system PlantServation using machine learning revealed seasonal

 PO-717
 pigment fluctuation trends in diploid and polyploid Arabidopsis

 CC15
 Toshiaki Tameshige (Yokohama City University, Japan)

 PO-718
 An automated robotic system on the RIPPS for chemical stimulation to plants

 Miki Fujita (RIKEN, Japan)

Name	Regist- ration number	Poster ID	Talk title	Session number	Date	Session start time	Talk duration incl. Q/A (min)
Akari Maeda	C000653	PO-421	Quantity regulation of TOC1 and PRR5 for temperature compensation in the Arabidopsis circadian clock	Concurrent 08	Day 2: Tue. Jun. 6	16:30	10
András Székely	C000473	PO-423	Long-distance circadian coordination via a phloem-delivered mobile transcript	Concurrent 29	Day 4: Thu. Jun. 8	10:30	6
Andrea Ramirez Ramirez	C000050	PO-008	A Comparative Study of Adaptive Stress Tolerance in the Brassicaceae Family	Concurrent 19	Day 3: Wed. Jun. 7	11:00	9
Andriy Volkov	C000541	PO-390	Mechanisms underlying polar membrane targeting of SOSEKI protein	Concurrent 32	Day 4: Thu. Jun. 8	14:00	9
Anjana S Hegde	C000514	PO-595	Identification of interacting factors of the TARANI/ Ubiquitin-specific protease 14 (UBP14) in Arabidopsis thaliana	Concurrent 06	Day 2: Tue. Jun. 6	14:30	9
Arp Schnittger	C000047	PO-498	Control of meiosis under heat stress	Concurrent 11	Day 2: Tue. Jun. 6	16:30	13
Bastiaan Bargmann	C000351	PO-564	It's All in the Timing: Enhancing Regeneration Efficiency Using Morphogenic Factors	Concurrent 04	Day 2: Tue. Jun. 6	14:30	11
Chan Yul Yoo	C000611	PO-368	Light-induced chloroplast biogenesis: photobodies control alternative promoter selection as a mechanism of nucleus-chloroplast communication	Concurrent 05	Day 2: Tue. Jun. 6	14:30	10
Chen Xiao	C000342	PO-234	Arabidopsis DXO1, a decapping enzyme for NAD-capped RNAs, activates RNMT1 to methylate the mRNA guanosine cap	Concurrent 17	Day 3: Wed. Jun. 7	9:00	7
Chih-Pin Chiang	C000656	PO-239	Dose-dependent long-distance movement of microRNA399 duplex regulates phosphate homeostasis in Arabidopsis	Concurrent 31	Day 4: Thu. Jun. 8	14:00	8
Chi-Hsin Chang	C000016	PO-152	The phytocytokine AtCAPE9 and its receptor AtCAPER1 functions on plant systemic stomatal immunity	Concurrent 14	Day 3: Wed. Jun. 7	9:00	9
Chin-Min Kimmy Ho	C000022	PO-651	Leaf epidermal patterning and fate determination	Concurrent 04	Day 2: Tue. Jun. 6	14:30	11
Christian RM Hermans	C000545	PO-679	The genetic diversity provided by natural Arabidopsis accessions to identify potentially adaptive differences in root morphology and soil resource capture	Concurrent 01	Day 2: Tue. Jun. 6	14:30	7
Chun-Kai Huang	C000200	PO-431	Identification of LWD1-interacting proteins reveals novel regulators for Arabidopsis circadian clock	Concurrent 29	Day 4: Thu. Jun. 8	10:30	12
Daniel Slane	C000307	PO-056	Epidermal Cell Type-Specific Chromatin Dynamics Underlying Arabidopsis Heat Stress Memory	Concurrent 02	Day 2: Tue. Jun. 6	14:30	9
Eleftheria Saplaoura	C000497	PO-242	Insights into tRNA-like structures (TLS) as motifs facilitating long-distance transport of mRNAs	Concurrent 33	Day 4: Thu. Jun. 8	14:00	8
Florence Brioudes	C000315	PO-412	A cell wall-modifying enzyme controls symplastic movement of RNA silencing in aerial Arabidopsis tissues	Concurrent 31	Day 4: Thu. Jun. 8	14:00	8
Francisco Benitez-Fuente	C000471	PO-357	Fuctional characterization of Arabidopsis thaliana Synaptotagmin1 domains using Tricalbin3 chimeras in Saccharomyces cerevisiae.	Concurrent 05	Day 2: Tue. Jun. 6	14:30	10
Ha Eun Jeh	C000030	PO-366	Sensory plastids in growth- and defense-related epigenetic phenotype adjustment	Concurrent 02	Day 2: Tue. Jun. 6	14:30	9
Haruki Nishio	C000529	PO-677	Seasonal dynamics of epigenome in a natural population of Arabidopsis halleri	Concurrent 30	Day 4: Thu. Jun. 8	14:00	9
Hiroshi Kudoh	C000599	PO-673	Altitudinal genetic differentiation in the leaf wax-mediated flowering bud protection against frost in an early-spring flowering herb, Arabidopsis halleri	Concurrent 30	Day 4: Thu. Jun. 8	14:00	9
Ho-Ming Chen	C000247	PO-215	Plant miRNA-target 3'-end pairing affects miRNA-mediated translational repression	Concurrent 12	Day 2: Tue. Jun. 6	16:30	11
HUAN-CHI TIEN	C000211	PO-243	The role of plant extracellular vesicles in mRNA intercellular trafficking	Concurrent 28	Day 4: Thu. Jun. 8	10:30	10
Itay Cohen	C000493	PO-575	Transcriptional Regulation of Cell-cell Movement During Root Tip Regeneration	Concurrent 04	Day 2: Tue. Jun. 6	14:30	11
Janis Dabisch	C000486	PO-359	SEED LIPID DROPLET PROTEIN 1 and 2 and LD-PLASMA MEMBRANE ADAPTOR form a lipid droplet-plasma membrane contact site that might play a role under stress	Concurrent 18	Day 3: Wed. Jun. 7	9:00	5
Jedrzej Szymanski Szymanski	C000456	PO-688	New elements of cis-regulatory code of plant genes revealed by deep learning models	Concurrent 23	Day 3: Wed. Jun. 7	11:00	10

Name	Regist- ration number	Poster ID	Talk title	Session number	Date	Session start time	Talk duration incl. Q/A (min)
Jeremy Berthelier	C000474	PO-191	Gene-transposon transcripts can be epigenetically regulated and impact gene response to stress conditions in Arabidopsis thaliana	Concurrent 24	Day 3: Wed. Jun. 7	11:00	5
Jie Linnan	C000670	PO-263	Histone chaperone NAP1 proteins are involved in plant growth under nitrogen deficient conditions in Arabidopsis thaliana	Concurrent 01	Day 2: Tue. Jun. 6	14:30	7
Ji-Young Lee	C000204	PO-644	A long-distance top-down movement of a transcription factor regulating the root phloem development	Concurrent 20	Day 3: Wed. Jun. 7	11:00	9
Jiyun Kim	C000504	PO-647	Phloem cells - from single cell transcriptomics to development and function	Concurrent 19	Day 3: Wed. Jun. 7	11:00	9
Jose Antonio Duarte-Conde	C000512	PO-254	Deciphering the role of specialized ribosomes in plants' translation efficiency	Concurrent 12	Day 2: Tue. Jun. 6	16:30	11
Jose M Alvarez	C000520	PO-259	NLP7 is a central integrator of transcription networks in nitrogen signaling and drought stress	Concurrent 07	Day 2: Tue. Jun. 6	16:30	9
Jose R Dinneny	C000591	PO-160	Studying the genetic basis for plant-microbe associations using a synthetic biology approach	Concurrent 13	Day 3: Wed. Jun. 7	9:00	14
Kengo Hayashi	C000261	PO-327	Chemical biology study of jasmonate signaling by development of a biased agonist derived from stereoisomers of coronatine	Concurrent 27	Day 4: Thu. Jun. 8	10:30	8
Kenji Matsui	C000489	PO-148	Is Ca2+-induced activation of Arabidopsis lipoxygenase 2 involved in green leaf volatile burst?	Concurrent 21	Day 3: Wed. Jun. 7	11:00	9
Keyan Zhu Salzman	C000237	PO-416	CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) controls resistance to aphid by altering indole glucosinolate production	Concurrent 21	Day 3: Wed. Jun. 7	11:00	9
Liam Walker	C000453	PO-542	Rational approaches to synchronizing germination in seed populations	Concurrent 19	Day 3: Wed. Jun. 7	11:00	9
Ling Meng	C000079	PO-703	Single-cell targeted chemical or genetic boosting of genome editing in maize	Concurrent 33	Day 4: Thu. Jun. 8	14:00	7
Ling Wang	C000092	PO-194	RNA deadenylation pathway suppresses transposable elements in Arabidopsis	Concurrent 24	Day 3: Wed. Jun. 7	11:00	5
Lothar Kalmbach	C000519	PO-646	Cellular adaptations for long-distance transport through the phloem sieve tube	Concurrent 20	Day 3: Wed. Jun. 7	11:00	9
Lucia Piro	C000435	PO-153	Investigating the Role of Carbohydrate Metabolism in Bacterial-Triggered Stomatal Movements Using the Model System Arabidopsis thaliana and Pseudomonas syringe pv tomato	Concurrent 09	Day 2: Tue. Jun. 6	16:30	8
Maika Hayashi	C000577	PO-415	Microfocus X-ray CT Analysis of Arabidopsis Petioles for Leaf Movement	Concurrent 29	Day 4: Thu. Jun. 8	10:30	12
María del Rosario Gonzá Iez Bermúdez	C000218	PO-029	Identification of new targets for improving abiotic stress tolerance in plants	Concurrent 27	Day 4: Thu. Jun. 8	10:30	8
Marija Smokvarska	C000028	PO-408	A novel mechanism for plasmodesmata mediated cell-cell communication in plants	Concurrent 20	Day 3: Wed. Jun. 7	11:00	9
Michael Taleski	C000696	PO-617	Coordinating root system architecture: the intersection of CEP and Cytokinin hormone pathways in Arabidopsis	Concurrent 26	Day 4: Thu. Jun. 8	10:30	9
Miho Sanagi	C000021	PO-260	Nitrogen-responsive SnRK1-FBH4 module affects flowering time and metabolism in Arabidopsis	Concurrent 19	Day 3: Wed. Jun. 7	11:00	9
Mingli Xu	C000099	PO-588	Temporal expression of BLADE-ON-PETIOLE 1 and 2 in successive leaves define the shape of their lamina	Concurrent 16	Day 3: Wed. Jun. 7	9:00	9
Monique van Schie	C000334	PO-355	Location, location, location: a system-wide assesment of subcellular protein localization in Arabidopsis roots by mass-spectrometry	Concurrent 03	Day 2: Tue. Jun. 6	14:30	12
Moriaki Saito	C000690	PO-133	AGO2 condensates behavior after bacterial inoculation	Concurrent 22	Day 3: Wed. Jun. 7	11:00	7
Naoya Sugi	C000382	PO-502	Ca2+-induced removal of inner vegetative plasma membrane in Arabidopsis sperm cells	Concurrent 32	Day 4: Thu. Jun. 8	14:00	9
Natanella Illouz- Eliaz	C000252	PO-043	Drought Recovery Induced Immunity Confers Pathogen Resistance	Concurrent 13	Day 3: Wed. Jun. 7	9:00	11
Nicolas Figueroa Fuentealba	C000249	PO-060	Characterization of Arabidopsis ECT family in stress tolerance and stress granules assembly	Concurrent 11	Day 2: Tue. Jun. 6	16:30	13

Name	Regist- ration number	Poster ID	Talk title	Session number	Date	Session start time	Talk duration incl. Q/A (min)
NoA Bae	C000579	PO-002	Enhanced Salt Tolerance by an Antarctic moss gene	Concurrent 30	Day 4: Thu. Jun. 8	14:00	9
Nobuhiro Suzuki	C000596	PO-041	Response of Arabidopsis thaliana to flooding with physical flow	Concurrent 25	Day 4: Thu. Jun. 8	10:30	10
Nobutoshi Yamaguchi	C000226	PO-053	Transcription factor and chromatin-based heat memory in plants	Concurrent 25	Day 4: Thu. Jun. 8	10:30	10
Pamela Carlson	C000141	PO-426	Role of the Arabidopsis AtbZIP63 transcription factor stability in energy management	Concurrent 07	Day 2: Tue. Jun. 6	16:30	9
Qian Wang	C000096	PO-321	A phosphoinositide hub connects CLE peptide signaling and polar auxin efflux regulation	Concurrent 26	Day 4: Thu. Jun. 8	10:30	9
Rahul Puthan Valappil	C000350	PO-447	A B-Box protein suppresses flowering in Arabidopsis through multi-level regulation of the photoperiod pathway	Concurrent 07	Day 2: Tue. Jun. 6	16:30	9
Ruth Cookson	C000277	PO-594	What did the grasses gain by losing PEAPOD? Evolution and conserved functionality of organ size and shape regulator PEAPOD	Concurrent 07	Day 2: Tue. Jun. 6	16:30	9
Sara Maynard	C000764	PO-358	405nm Photostimulation of the Endoplasmic Reticulum-Chloroplast Contact Site in Arabidopsis Hypocotyls Causes Rapid Cytoskeletal Depolymerization, Elevated Cytoplasmic Calcium, and Elevated Organellar ROS	Concurrent 05	Day 2: Tue. Jun. 6	14:30	10
Satoshi Endo	C000077	PO-398	A cell wall-modifying gene-dependent CLE peptide transport in conferring drought resistance	Concurrent 14	Day 3: Wed. Jun. 7	9:00	9
Selene Garcia- Hernandez	C000522	PO-356	The role of DGK1 and DGK2 in Membrane Contact Sites and Stress Tolerance	Concurrent 18	Day 3: Wed. Jun. 7	9:00	5
Shao-Li Yang	C000046	PO-065	Heat-regulated phosphorylation of TOT43 is a switch for stress granule association to contribute to heat tolerance in Arabidopsis	Concurrent 11	Day 2: Tue. Jun. 6	16:30	13
Shoji Mano	C000280	PO-372	Molecular mechanism for peroxisomal protein transport via the ubiquitin system	Concurrent 06	Day 2: Tue. Jun. 6	14:30	9
Shota Yamauchi	C000214	PO-441	Phosphorylation of WD-repeat protein WDR by phototropins is essential for starch degradation to promote stomatal opening	Concurrent 09	Day 2: Tue. Jun. 6	16:30	8
Shuichi Kudo	C000223	PO-427	Assessing the impacts of genetic defects on starch metabolism in Arabidopsis plants using the carbon homeostasis model	Concurrent 23	Day 3: Wed. Jun. 7	11:00	10
Timo Schlemmer	C000757	PO-210	Proof of concept: circular antisense RNAs (caRNAs) as a new mode of action for RNA-based plant protection	Concurrent 28	Day 4: Thu. Jun. 8	10:30	10
Toshiaki Tameshige	C000567	PO-717	Time-series field phenotyping system PlantServation using machine learning revealed seasonal pigment fluctuation trends in diploid and polyploid Arabidopsis	Concurrent 15	Day 3: Wed. Jun. 7	9:00	11
Toshiro Ito	C000580	PO-456	Erasure of Epigenetic Memory in Arabidopsis Flowering Control	Concurrent 16	Day 3: Wed. Jun. 7	9:00	9
Travis Lee	C000090	PO-693	A single-nucleus transcriptome atlas of seed-to-seed development in Arabidopsis	Concurrent 03	Day 2: Tue. Jun. 6	14:30	12
Xing Wu	C000635	PO-682	Rapid evolution in Arabidopsis thaliana in global field experiments in the pan- genomic era	Concurrent 15	Day 3: Wed. Jun. 7	9:00	11
Yan Yan	C000171	PO-211	siRNAs derived from nitrate reductases, NIA1 and NIA2, play vital roles in growth and stress adaptation	Concurrent 17	Day 3: Wed. Jun. 7	9:00	7
Ying-Lan Chen	C000701	PO-402	An Evolutionarily Conserved Long-distance Migrating Peptide Regulates Lignin Biosynthesis Pathway and Plant Immunity	Concurrent 14	Day 3: Wed. Jun. 7	9:00	9
Yohei Takahashi	C000543	PO-075	Stomatal CO2/bicarbonate Sensor Consists of Two Interacting Protein Kinases HT1 and MPK4/12 in Arabidopsis	Concurrent 09	Day 2: Tue. Jun. 6	16:30	8
Yongming Luo	C000098	PO-325	Brassinosteroid receptor BRI1 deubiquitination by UBP12/UBP13 fine-tunes plant growth	Concurrent 32	Day 4: Thu. Jun. 8	14:00	9
Yu-Hsien Chang	C000167	PO-411	Investigating the role of the Arabidopsis ROTAMASE CYCLOPHILIN gene family in organelle-mediated mobile mRNAs transport	Concurrent 31	Day 4: Thu. Jun. 8	14:00	8
Yuki Hirakawa	C000664	PO-582	Analysis of stem cell-promoting CLE peptide signaling in the shoot apical meristems of land plants	Concurrent 10	Day 2: Tue. Jun. 6	16:30	12
Yuki Yoshida	C000712	PO-660	Stomata-derived intercellular signaling that directs mesophyll air space formation	Concurrent 26	Day 4: Thu. Jun. 8	10:30	9

Name	Regist- ration number	Poster ID	Talk title	Session number	Date	Session start time	Talk duration incl. Q/A (min)
Yukio Kurihara	C000390	PO-236	NMD and translation of intergenic splicing-mediated polycistronic transcripts	Concurrent 12	Day 2: Tue. Jun. 6	16:30	11
Zhe Wu	C000336	PO-494	Distinct chromatin signatures in the Arabidopsis male gametophyte	Concurrent 16	Day 3: Wed. Jun. 7	9:00	9
Zhen Lei	C000064	PO-193	Translation-coupled Epigenetic Regulation of Transposable Elements in Plants	Concurrent 12	Day 2: Tue. Jun. 6	16:30	11